This is an account of slightly less common Hypothesis features that you don’t need to get started but will nevertheless make your life easier.

Normally the output of a failing test will look something like:

```Falsifying example: test_a_thing(x=1, y="foo")
```

With the `repr` of each keyword argument being printed.

Sometimes this isn’t enough, either because you have a value with a `__repr__()` method that isn’t very descriptive or because you need to see the output of some intermediate steps of your test. That’s where the `note` function comes in:

`hypothesis.``note`(value)[source]

Report this value in the final execution.

```>>> from hypothesis import given, note, strategies as st
>>> @given(st.lists(st.integers()), st.randoms())
... def test_shuffle_is_noop(ls, r):
...     ls2 = list(ls)
...     r.shuffle(ls2)
...     note("Shuffle: %r" % (ls2))
...     assert ls == ls2
...
>>> try:
...     test_shuffle_is_noop()
... except AssertionError:
...     print('ls != ls2')
Falsifying example: test_shuffle_is_noop(ls=[0, 1], r=RandomWithSeed(1))
Shuffle: [1, 0]
ls != ls2
```

The note is printed in the final run of the test in order to include any additional information you might need in your test.

## Test statistics¶

If you are using pytest you can see a number of statistics about the executed tests by passing the command line argument `--hypothesis-show-statistics`. This will include some general statistics about the test:

For example if you ran the following with `--hypothesis-show-statistics`:

```from hypothesis import given, strategies as st

@given(st.integers())
def test_integers(i):
pass
```

You would see:

```- during generate phase (0.06 seconds):
- Typical runtimes: < 1ms, ~ 47% in data generation
- 100 passing examples, 0 failing examples, 0 invalid examples
- Stopped because settings.max_examples=100
```

The final “Stopped because” line is particularly important to note: It tells you the setting value that determined when the test should stop trying new examples. This can be useful for understanding the behaviour of your tests. Ideally you’d always want this to be .

In some cases (such as filtered and recursive strategies) you will see events mentioned which describe some aspect of the data generation:

```from hypothesis import given, strategies as st

@given(st.integers().filter(lambda x: x % 2 == 0))
def test_even_integers(i):
pass
```

You would see something like:

```test_even_integers:

- during generate phase (0.08 seconds):
- Typical runtimes: < 1ms, ~ 57% in data generation
- 100 passing examples, 0 failing examples, 12 invalid examples
- Events:
* 51.79%, Retried draw from integers().filter(lambda x: x % 2 == 0) to satisfy filter
* 10.71%, Aborted test because unable to satisfy integers().filter(lambda x: x % 2 == 0)
- Stopped because settings.max_examples=100
```

You can also mark custom events in a test using the `event` function:

`hypothesis.``event`(value)[source]

Record an event that occurred this test. Statistics on number of test runs with each event will be reported at the end if you run Hypothesis in statistics reporting mode.

Events should be strings or convertible to them.

```from hypothesis import given, event, strategies as st

@given(st.integers().filter(lambda x: x % 2 == 0))
def test_even_integers(i):
event("i mod 3 = %d" % (i % 3,))
```

You will then see output like:

```test_even_integers:

- during generate phase (0.09 seconds):
- Typical runtimes: < 1ms, ~ 59% in data generation
- 100 passing examples, 0 failing examples, 32 invalid examples
- Events:
* 54.55%, Retried draw from integers().filter(lambda x: x % 2 == 0) to satisfy filter
* 31.06%, i mod 3 = 2
* 28.79%, i mod 3 = 0
* 24.24%, Aborted test because unable to satisfy integers().filter(lambda x: x % 2 == 0)
* 15.91%, i mod 3 = 1
- Stopped because settings.max_examples=100
```

Arguments to `event` can be any hashable type, but two events will be considered the same if they are the same when converted to a string with `str`.

## Making assumptions¶

Sometimes Hypothesis doesn’t give you exactly the right sort of data you want - it’s mostly of the right shape, but some examples won’t work and you don’t want to care about them. You can just ignore these by aborting the test early, but this runs the risk of accidentally testing a lot less than you think you are. Also it would be nice to spend less time on bad examples - if you’re running 100 examples per test (the default) and it turns out 70 of those examples don’t match your needs, that’s a lot of wasted time.

`hypothesis.``assume`(condition)[source]

Calling `assume` is like an assert that marks the example as bad, rather than failing the test.

This allows you to specify properties that you assume will be true, and let Hypothesis try to avoid similar examples in future.

For example suppose you had the following test:

```@given(floats())
def test_negation_is_self_inverse(x):
assert x == -(-x)
```

Running this gives us:

```Falsifying example: test_negation_is_self_inverse(x=float('nan'))
AssertionError
```

This is annoying. We know about NaN and don’t really care about it, but as soon as Hypothesis finds a NaN example it will get distracted by that and tell us about it. Also the test will fail and we want it to pass.

So let’s block off this particular example:

```from math import isnan

@given(floats())
def test_negation_is_self_inverse_for_non_nan(x):
assume(not isnan(x))
assert x == -(-x)
```

And this passes without a problem.

In order to avoid the easy trap where you assume a lot more than you intended, Hypothesis will fail a test when it can’t find enough examples passing the assumption.

If we’d written:

```@given(floats())
def test_negation_is_self_inverse_for_non_nan(x):
assume(False)
assert x == -(-x)
```

Then on running we’d have got the exception:

```Unsatisfiable: Unable to satisfy assumptions of hypothesis test_negation_is_self_inverse_for_non_nan. Only 0 examples considered satisfied assumptions
```

### How good is assume?¶

Hypothesis has an adaptive exploration strategy to try to avoid things which falsify assumptions, which should generally result in it still being able to find examples in hard to find situations.

```@given(lists(integers()))
def test_sum_is_positive(xs):
assert sum(xs) > 0
```

Unsurprisingly this fails and gives the falsifying example `[]`.

Adding `assume(xs)` to this removes the trivial empty example and gives us ``.

Adding `assume(all(x > 0 for x in xs))` and it passes: the sum of a list of positive integers is positive.

The reason that this should be surprising is not that it doesn’t find a counter-example, but that it finds enough examples at all.

In order to make sure something interesting is happening, suppose we wanted to try this for long lists. e.g. suppose we added an `assume(len(xs) > 10)` to it. This should basically never find an example: a naive strategy would find fewer than one in a thousand examples, because if each element of the list is negative with probability one-half, you’d have to have ten of these go the right way by chance. In the default configuration Hypothesis gives up long before it’s tried 1000 examples (by default it tries 200).

Here’s what happens if we try to run this:

```@given(lists(integers()))
def test_sum_is_positive(xs):
assume(len(xs) > 1)
assume(all(x > 0 for x in xs))
print(xs)
assert sum(xs) > 0
```

In: `test_sum_is_positive()`

```[17, 12, 7, 13, 11, 3, 6, 9, 8, 11, 47, 27, 1, 31, 1]
[6, 2, 29, 30, 25, 34, 19, 15, 50, 16, 10, 3, 16]
[25, 17, 9, 19, 15, 2, 2, 4, 22, 10, 10, 27, 3, 1, 14, 17, 13, 8, 16, 9, 2, ...]
[17, 65, 78, 1, 8, 29, 2, 79, 28, 18, 39]
[13, 26, 8, 3, 4, 76, 6, 14, 20, 27, 21, 32, 14, 42, 9, 24, 33, 9, 5, 15, ...]
[2, 1, 2, 2, 3, 10, 12, 11, 21, 11, 1, 16]
```

As you can see, Hypothesis doesn’t find many examples here, but it finds some - enough to keep it happy.

In general if you can shape your strategies better to your tests you should - for example is a lot better than `assume(1 <= x <= 1000)`, but `assume` will take you a long way if you can’t.

## Defining strategies¶

The type of object that is used to explore the examples given to your test function is called a . These are created using the functions exposed in the module.

Many of these strategies expose a variety of arguments you can use to customize generation. For example for integers you can specify `min` and `max` values of integers you want. If you want to see exactly what a strategy produces you can ask for an example:

```>>> integers(min_value=0, max_value=10).example()
1
```

Many strategies are built out of other strategies. For example, if you want to define a tuple you need to say what goes in each element:

```>>> from hypothesis.strategies import tuples
>>> tuples(integers(), integers()).example()
(-24597, 12566)
```

Further details are available in a separate document.

## The gory details of given parameters¶

`hypothesis.``given`(*_given_arguments, **_given_kwargs)[source]

A decorator for turning a test function that accepts arguments into a randomized test.

This is the main entry point to Hypothesis.

The decorator may be used to specify which arguments of a function should be parametrized over. You can use either positional or keyword arguments, but not a mixture of both.

For example all of the following are valid uses:

```@given(integers(), integers())
def a(x, y):
pass

@given(integers())
def b(x, y):
pass

@given(y=integers())
def c(x, y):
pass

@given(x=integers())
def d(x, y):
pass

@given(x=integers(), y=integers())
def e(x, **kwargs):
pass

@given(x=integers(), y=integers())
def f(x, *args, **kwargs):
pass

class SomeTest(TestCase):
@given(integers())
def test_a_thing(self, x):
pass
```

The following are not:

```@given(integers(), integers(), integers())
def g(x, y):
pass

@given(integers())
def h(x, *args):
pass

@given(integers(), x=integers())
def i(x, y):
pass

@given()
def j(x, y):
pass
```

The rules for determining what are valid uses of `given` are as follows:

1. You may pass any keyword argument to `given`.

2. Positional arguments to `given` are equivalent to the rightmost named arguments for the test function.

3. Positional arguments may not be used if the underlying test function has varargs, arbitrary keywords, or keyword-only arguments.

4. Functions tested with `given` may not have any defaults.

The reason for the “rightmost named arguments” behaviour is so that using with instance methods works: `self` will be passed to the function as normal and not be parametrized over.

The function returned by given has all the same arguments as the original test, minus those that are filled in by . Check to see how this affects other testing libraries you may be using.

## Targeted example generation¶

Targeted property-based testing combines the advantages of both search-based and property-based testing. Instead of being completely random, T-PBT uses a search-based component to guide the input generation towards values that have a higher probability of falsifying a property. This explores the input space more effectively and requires fewer tests to find a bug or achieve a high confidence in the system being tested than random PBT. (Löscher and Sagonas)

This is not always a good idea - for example calculating the search metric might take time better spent running more uniformly-random test cases - but Hypothesis has experimental support for targeted PBT you may wish to try.

`hypothesis.``target`(observation, *, label='')[source]

Calling this function with an `int` or `float` observation gives it feedback with which to guide our search for inputs that will cause an error, in addition to all the usual heuristics. Observations must always be finite.

Hypothesis will try to maximize the observed value over several examples; almost any metric will work so long as it makes sense to increase it. For example, `-abs(error)` is a metric that increases as `error` approaches zero.

Example metrics:

• Number of elements in a collection, or tasks in a queue

• Mean or maximum runtime of a task (or both, if you use `label`)

• Compression ratio for data (perhaps per-algorithm or per-level)

• Number of steps taken by a state machine

The optional `label` argument can be used to distinguish between and therefore separately optimise distinct observations, such as the mean and standard deviation of a dataset. It is an error to call `target()` with any label more than once per test case.

Note

The more examples you run, the better this technique works.

As a rule of thumb, the targeting effect is noticeable above , and immediately obvious by around ten thousand examples per label used by your test.

Note

`hypothesis.target` is considered experimental, and may be radically changed or even removed in a future version. If you find it useful, please let us know so we can share and build on that success!

include the best score seen for each label, which can help avoid the threshold problem when the minimal example shrinks right down to the threshold of failure (issue #2180).

We recommend that users also skim the papers introducing targeted PBT; from ISSTA 2017 and ICST 2018. For the curious, the initial implementation in Hypothesis uses hill-climbing search via a mutating fuzzer, with some tactics inspired by simulated annealing to avoid getting stuck and endlessly mutating a local maximum.

## Custom function execution¶

Hypothesis provides you with a hook that lets you control how it runs examples.

This lets you do things like set up and tear down around each example, run examples in a subprocess, transform coroutine tests into normal tests, etc. For example, in the Django extra runs each example in a separate database transaction.

The way this works is by introducing the concept of an executor. An executor is essentially a function that takes a block of code and run it. The default executor is:

```def default_executor(function):
return function()
```

You define executors by defining a method `execute_example` on a class. Any test methods on that class with used on them will use `self.execute_example` as an executor with which to run tests. For example, the following executor runs all its code twice:

```from unittest import TestCase

class TestTryReallyHard(TestCase):
@given(integers())
def test_something(self, i):
perform_some_unreliable_operation(i)

def execute_example(self, f):
f()
return f()
```

Note: The functions you use in map, etc. will run inside the executor. i.e. they will not be called until you invoke the function passed to `execute_example`.

An executor must be able to handle being passed a function which returns None, otherwise it won’t be able to run normal test cases. So for example the following executor is invalid:

```from unittest import TestCase

class TestRunTwice(TestCase):
def execute_example(self, f):
return f()()
```

and should be rewritten as:

```from unittest import TestCase

class TestRunTwice(TestCase):
def execute_example(self, f):
result = f()
if callable(result):
result = result()
return result
```

An alternative hook is provided for use by test runner extensions such as pytest-trio, which cannot use the `execute_example` method. This is not recommended for end-users - it is better to write a complete test function directly, perhaps by using a decorator to perform the same transformation before applying .

```@given(x=integers())
@pytest.mark.trio
async def test(x):
...

# Illustrative code, inside the pytest-trio plugin
test.hypothesis.inner_test = lambda x: trio.run(test, x)
```

For authors of test runners however, assigning to the `inner_test` attribute of the `hypothesis` attribute of the test will replace the interior test.

Note

The new `inner_test` must accept and pass through all the `*args` and `**kwargs` expected by the original test.

If the end user has also specified a custom executor using the `execute_example` method, it - and all other execution-time logic - will be applied to the new inner test assigned by the test runner.

## Making random code deterministic¶

While Hypothesis’ example generation can be used for nondeterministic tests, debugging anything nondeterministic is usually a very frustrating exercise. To make things worse, our example shrinking relies on the same input causing the same failure each time - though we show the un-shrunk failure and a decent error message if it doesn’t.

By default, Hypothesis will handle the global `random` and `numpy.random` random number generators for you, and you can register others:

`hypothesis.``register_random`(r)[source]

Register the given Random instance for management by Hypothesis.

You can pass `random.Random` instances (or other objects with seed, getstate, and setstate methods) to `register_random(r)` to have their states seeded and restored in the same way as the global PRNGs from the `random` and `numpy.random` modules.

All global PRNGs, from e.g. simulation or scheduling frameworks, should be registered to prevent flaky tests. Hypothesis will ensure that the PRNG state is consistent for all test runs, or reproducibly varied if you choose to use the strategy.

## Inferred strategies¶

In some cases, Hypothesis can work out what to do when you omit arguments. This is based on introspection, not magic, and therefore has well-defined limits.

will check the signature of the `target` (using `getfullargspec()`). If there are required arguments with type annotations and no strategy was passed to , is used to fill them in. You can also pass the special value as a keyword argument, to force this inference for arguments with a default value.

```>>> def func(a: int, b: str):
...     return [a, b]
>>> builds(func).example()
[-6993, '']
```
`hypothesis.``infer`

does not perform any implicit inference for required arguments, as this would break compatibility with pytest fixtures. can be used as a keyword argument to explicitly fill in an argument from its type annotation.

```@given(a=infer)
def test(a: int):
pass

# is equivalent to
@given(a=integers())
def test(a):
pass
```

### Limitations¶

Hypothesis does not inspect PEP 484 type comments at runtime. While will work as usual, inference in and will only work if you manually create the `__annotations__` attribute (e.g. by using `@annotations(...)` and `@returns(...)` decorators).

The `typing` module is provisional and has a number of internal changes between Python 3.5.0 and 3.6.1, including at minor versions. These are all supported on a best-effort basis, but you may encounter problems with an old version of the module. Please report them to us, and consider updating to a newer version of Python as a workaround.

## Type annotations in Hypothesis¶

If you install Hypothesis and use mypy 0.590+, or another PEP 561-compatible tool, the type checker should automatically pick up our type hints.

Note

Hypothesis’ type hints may make breaking changes between minor releases.

Upstream tools and conventions about type hints remain in flux - for example the `typing` module itself is provisional, and Mypy has not yet reached version 1.0 - and we plan to support the latest version of this ecosystem, as well as older versions where practical.

We may also find more precise ways to describe the type of various interfaces, or change their type and runtime behaviour together in a way which is otherwise backwards-compatible. We often omit type hints for deprecated features or arguments, as an additional form of warning.

There are known issues inferring the type of examples generated by , , , , and . We will fix these, and require correspondingly newer versions of Mypy for type hinting, as the ecosystem improves.

### Writing downstream type hints¶

Projects that provide Hypothesis strategies and use type hints may wish to annotate their strategies too. This is a supported use-case, again on a best-effort provisional basis. For example:

```def foo_strategy() -> SearchStrategy[Foo]:
...
```
class `hypothesis.strategies.``SearchStrategy`

is the type of all strategy objects. It is a generic type, and covariant in the type of the examples it creates. For example:

• `integers()` is of type `SearchStrategy[int]`.

• `lists(integers())` is of type `SearchStrategy[List[int]]`.

• `SearchStrategy[Dog]` is a subtype of `SearchStrategy[Animal]` if `Dog` is a subtype of `Animal` (as seems likely).

Warning

should only be used in type hints. Please do not inherit from, compare to, or otherwise use it in any way outside of type hints. The only supported way to construct objects of this type is to use the functions provided by the module!

## The Hypothesis pytest plugin¶

Hypothesis includes a tiny plugin to improve integration with pytest, which is activated by default (but does not affect other test runners). It aims to improve the integration between Hypothesis and Pytest by providing extra information and convenient access to config options.

Finally, all tests that are defined with Hypothesis automatically have `@pytest.mark.hypothesis` applied to them. See here for information on working with markers.

Note

Pytest will load the plugin automatically if Hypothesis is installed. You don’t need to do anything at all to use it.

## Use with external fuzzers¶

Warning

This feature is experimental, and may change or be removed in a minor update.

Sometimes, you might want to point a traditional fuzzer such as python-afl or pythonfuzz at your code. Wouldn’t it be nice if you could use any of your tests as fuzz targets?

```@given(st.text())
def test_foo(s):
...

# This is a traditional fuzz target - call it with a bytestring,
# or a binary IO object, and it runs the test once.
fuzz_target = test_foo.hypothesis.fuzz_one_input

# For example:
fuzz_target(b"\x00\x00\x00\x00\x00\x00\x00\x00")
fuzz_target(io.BytesIO(...))
```

Depending on the input to `fuzz_one_input`, one of three things will happen:

• If the bytestring was invalid, for example because it was too short or failed a filter or too many times, `fuzz_one_input` returns `None`.

• If the bytestring was valid and the test passed, `fuzz_one_input` returns a canonicalised and pruned buffer which will replay that test case. This is provided as an option to improve the performance of mutating fuzzers, but can safely be ignored.

• If the test failed, i.e. raised an exception, `fuzz_one_input` will add the pruned buffer to the Hypothesis example database and then re-raise that exception. All you need to do to reproduce, minimize, and de-duplicate all the failures found via fuzzing is run your test suite!

Note that the interpretation of both input and output bytestrings is specific to the exact version of Hypothesis you are using and the strategies given to the test, just like the example database and decorator.

### Interaction with settings¶

`fuzz_one_input` uses just enough of Hypothesis’ internals to drive your test function with a fuzzer-provided bytestring, and most settings therefore have no effect in this mode. We recommend running your tests the usual way before fuzzing to get the benefits of healthchecks, as well as afterwards to replay, shrink, deduplicate, and report whatever errors were discovered.

The `deadline`, `derandomize`, `max_examples`, `phases`, `print_blob`, `report_multiple_bugs`, and `suppress_health_check` settings do not affect fuzzing mode.