

Welcome to Hypothesis!

Hypothesis [https://hypothesis.works] is a Python library for
creating unit tests which are simpler to write and more powerful when run,
finding edge cases in your code you wouldn’t have thought to look for. It is
stable, powerful and easy to add to any existing test suite.

It works by letting you write tests that assert that something should be true
for every case, not just the ones you happen to think of.

Think of a normal unit test as being something like the following:

	Set up some data.

	Perform some operations on the data.

	Assert something about the result.

Hypothesis lets you write tests which instead look like this:

	For all data matching some specification.

	Perform some operations on the data.

	Assert something about the result.

This is often called property-based testing, and was popularised by the
Haskell library Quickcheck [https://hackage.haskell.org/package/QuickCheck].

It works by generating arbitrary data matching your specification and checking
that your guarantee still holds in that case. If it finds an example where it doesn’t,
it takes that example and cuts it down to size, simplifying it until it finds a
much smaller example that still causes the problem. It then saves that example
for later, so that once it has found a problem with your code it will not forget
it in the future.

Writing tests of this form usually consists of deciding on guarantees that
your code should make - properties that should always hold true,
regardless of what the world throws at you. Examples of such guarantees
might be:

	Your code shouldn’t throw an exception, or should only throw a particular
type of exception (this works particularly well if you have a lot of internal
assertions).

	If you delete an object, it is no longer visible.

	If you serialize and then deserialize a value, then you get the same value back.

Now you know the basics of what Hypothesis does, the rest of this
documentation will take you through how and why. It’s divided into a
number of sections, which you can see in the sidebar (or the
menu at the top if you’re on mobile), but you probably want to begin with
the Quick start guide, which will give you a worked
example of how to use Hypothesis and a detailed outline
of the things you need to know to begin testing your code with it, or
check out some of the
introductory articles [https://hypothesis.works/articles/intro/].

Quick start guide

This document should talk you through everything you need to get started with
Hypothesis.

An example

Suppose we’ve written a run length encoding [https://en.wikipedia.org/wiki/Run-length_encoding]
system and we want to test it out.

We have the following code which I took straight from the
Rosetta Code [https://rosettacode.org/wiki/Run-length_encoding] wiki (OK, I
removed some commented out code and fixed the formatting, but there are no
functional modifications):

def encode(input_string):
 count = 1
 prev = ""
 lst = []
 for character in input_string:
 if character != prev:
 if prev:
 entry = (prev, count)
 lst.append(entry)
 count = 1
 prev = character
 else:
 count += 1
 entry = (character, count)
 lst.append(entry)
 return lst

def decode(lst):
 q = ""
 for character, count in lst:
 q += character * count
 return q

We want to write a test for this that will check some invariant of these
functions.

The invariant one tends to try when you’ve got this sort of encoding /
decoding is that if you encode something and then decode it then you get the same
value back.

Let’s see how you’d do that with Hypothesis:

from hypothesis import given
from hypothesis.strategies import text

@given(text())
def test_decode_inverts_encode(s):
 assert decode(encode(s)) == s

(For this example we’ll just let pytest discover and run the test. We’ll cover
other ways you could have run it later).

The text function returns what Hypothesis calls a search strategy. An object
with methods that describe how to generate and simplify certain kinds of
values. The @given decorator then takes our test
function and turns it into a
parametrized one which, when called, will run the test function over a wide
range of matching data from that strategy.

Anyway, this test immediately finds a bug in the code:

Falsifying example: test_decode_inverts_encode(s='')

UnboundLocalError: local variable 'character' referenced before assignment

Hypothesis correctly points out that this code is simply wrong if called on
an empty string.

If we fix that by just adding the following code to the beginning of our encode function
then Hypothesis tells us the code is correct (by doing nothing as you’d expect
a passing test to).

if not input_string:
 return []

If we wanted to make sure this example was always checked we could add it in
explicitly by using the @example decorator:

from hypothesis import example, given, strategies as st

@given(st.text())
@example("")
def test_decode_inverts_encode(s):
 assert decode(encode(s)) == s

This can be useful to show other developers (or your future self) what kinds
of data are valid inputs, or to ensure that particular edge cases such as
"" are tested every time. It’s also great for regression tests because
although Hypothesis will remember failing examples,
we don’t recommend distributing that database.

It’s also worth noting that both @example and
@given support keyword arguments as
well as positional. The following would have worked just as well:

@given(s=st.text())
@example(s="")
def test_decode_inverts_encode(s):
 assert decode(encode(s)) == s

Suppose we had a more interesting bug and forgot to reset the count
each time. Say we missed a line in our encode method:

def encode(input_string):
 count = 1
 prev = ""
 lst = []
 for character in input_string:
 if character != prev:
 if prev:
 entry = (prev, count)
 lst.append(entry)
 # count = 1 # Missing reset operation
 prev = character
 else:
 count += 1
 entry = (character, count)
 lst.append(entry)
 return lst

Hypothesis quickly informs us of the following example:

Falsifying example: test_decode_inverts_encode(s='001')

Note that the example provided is really quite simple. Hypothesis doesn’t just
find any counter-example to your tests, it knows how to simplify the examples
it finds to produce small easy to understand ones. In this case, two identical
values are enough to set the count to a number different from one, followed by
another distinct value which should have reset the count but in this case
didn’t.

Installing

Hypothesis is available on PyPI as “hypothesis” [https://pypi.org/project/hypothesis/]. You can install it with:

pip install hypothesis

You can install the dependencies for optional extensions with
e.g. pip install hypothesis[pandas,django].

If you want to install directly from the source code (e.g. because you want to
make changes and install the changed version), check out the instructions in
CONTRIBUTING.rst [https://github.com/HypothesisWorks/hypothesis/blob/master/CONTRIBUTING.rst].

Running tests

In our example above we just let pytest discover and run our tests, but we could
also have run it explicitly ourselves:

if __name__ == "__main__":
 test_decode_inverts_encode()

We could also have done this as a unittest.TestCase [https://docs.python.org/3/library/unittest.html#unittest.TestCase]:

import unittest

class TestEncoding(unittest.TestCase):
 @given(text())
 def test_decode_inverts_encode(self, s):
 self.assertEqual(decode(encode(s)), s)

if __name__ == "__main__":
 unittest.main()

A detail: This works because Hypothesis ignores any arguments it hasn’t been
told to provide (positional arguments start from the right), so the self
argument to the test is simply ignored and works as normal. This also means
that Hypothesis will play nicely with other ways of parameterizing tests. e.g
it works fine if you use pytest fixtures for some arguments and Hypothesis for
others.

Writing tests

A test in Hypothesis consists of two parts: A function that looks like a normal
test in your test framework of choice but with some additional arguments, and
a @given decorator that specifies
how to provide those arguments.

Here are some other examples of how you could use that:

from hypothesis import given, strategies as st

@given(st.integers(), st.integers())
def test_ints_are_commutative(x, y):
 assert x + y == y + x

@given(x=st.integers(), y=st.integers())
def test_ints_cancel(x, y):
 assert (x + y) - y == x

@given(st.lists(st.integers()))
def test_reversing_twice_gives_same_list(xs):
 # This will generate lists of arbitrary length (usually between 0 and
 # 100 elements) whose elements are integers.
 ys = list(xs)
 ys.reverse()
 ys.reverse()
 assert xs == ys

@given(st.tuples(st.booleans(), st.text()))
def test_look_tuples_work_too(t):
 # A tuple is generated as the one you provided, with the corresponding
 # types in those positions.
 assert len(t) == 2
 assert isinstance(t[0], bool)
 assert isinstance(t[1], str)

Note that as we saw in the above example you can pass arguments to @given
either as positional or as keywords.

Where to start

You should now know enough of the basics to write some tests for your code
using Hypothesis. The best way to learn is by doing, so go have a try.

If you’re stuck for ideas for how to use this sort of test for your code, here
are some good starting points:

	Try just calling functions with appropriate arbitrary data and see if they
crash. You may be surprised how often this works. e.g. note that the first
bug we found in the encoding example didn’t even get as far as our
assertion: It crashed because it couldn’t handle the data we gave it, not
because it did the wrong thing.

	Look for duplication in your tests. Are there any cases where you’re testing
the same thing with multiple different examples? Can you generalise that to
a single test using Hypothesis?

	This piece is designed for an F# implementation [https://fsharpforfunandprofit.com/posts/property-based-testing-2/], but
is still very good advice which you may find helps give you good ideas for
using Hypothesis.

If you have any trouble getting started, don’t feel shy about
asking for help.

Details and advanced features

This is an account of slightly less common Hypothesis features that you don’t need
to get started but will nevertheless make your life easier.

Additional test output

Normally the output of a failing test will look something like:

Falsifying example: test_a_thing(x=1, y="foo")

With the repr of each keyword argument being printed.

Sometimes this isn’t enough, either because you have a value with a
__repr__() method that isn’t very descriptive or because you need to see the output of some
intermediate steps of your test. That’s where the note function comes in:

	
hypothesis.note(value)

	Report this value for the minimal failing example.

>>> from hypothesis import given, note, strategies as st
>>> @given(st.lists(st.integers()), st.randoms())
... def test_shuffle_is_noop(ls, r):
... ls2 = list(ls)
... r.shuffle(ls2)
... note(f"Shuffle: {ls2!r}")
... assert ls == ls2
...
>>> try:
... test_shuffle_is_noop()
... except AssertionError:
... print("ls != ls2")
...
Falsifying example: test_shuffle_is_noop(ls=[0, 1], r=RandomWithSeed(1))
Shuffle: [1, 0]
ls != ls2

The note is printed for the minimal failing example of the test in order to include any
additional information you might need in your test.

Test statistics

If you are using pytest [https://pypi.org/project/pytest/] you can see a number of statistics about the executed tests
by passing the command line argument --hypothesis-show-statistics. This will include
some general statistics about the test:

For example if you ran the following with --hypothesis-show-statistics:

from hypothesis import given, strategies as st

@given(st.integers())
def test_integers(i):
 pass

You would see:

- during generate phase (0.06 seconds):
 - Typical runtimes: < 1ms, ~ 47% in data generation
 - 100 passing examples, 0 failing examples, 0 invalid examples
- Stopped because settings.max_examples=100

The final “Stopped because” line is particularly important to note: It tells you the
setting value that determined when the test should stop trying new examples. This
can be useful for understanding the behaviour of your tests. Ideally you’d always want
this to be max_examples.

In some cases (such as filtered and recursive strategies) you will see events mentioned
which describe some aspect of the data generation:

from hypothesis import given, strategies as st

@given(st.integers().filter(lambda x: x % 2 == 0))
def test_even_integers(i):
 pass

You would see something like:

test_even_integers:

 - during generate phase (0.08 seconds):
 - Typical runtimes: < 1ms, ~ 57% in data generation
 - 100 passing examples, 0 failing examples, 12 invalid examples
 - Events:
 * 51.79%, Retried draw from integers().filter(lambda x: x % 2 == 0) to satisfy filter
 * 10.71%, Aborted test because unable to satisfy integers().filter(lambda x: x % 2 == 0)
 - Stopped because settings.max_examples=100

You can also mark custom events in a test using the event function:

	
hypothesis.event(value, payload='')

	Record an event that occurred during this test. Statistics on the number of test
runs with each event will be reported at the end if you run Hypothesis in
statistics reporting mode.

Event values should be strings or convertible to them. If an optional
payload is given, it will be included in the string for Test statistics.

from hypothesis import event, given, strategies as st

@given(st.integers().filter(lambda x: x % 2 == 0))
def test_even_integers(i):
 event(f"i mod 3 = {i%3}")

You will then see output like:

test_even_integers:

 - during generate phase (0.09 seconds):
 - Typical runtimes: < 1ms, ~ 59% in data generation
 - 100 passing examples, 0 failing examples, 32 invalid examples
 - Events:
 * 54.55%, Retried draw from integers().filter(lambda x: x % 2 == 0) to satisfy filter
 * 31.06%, i mod 3 = 2
 * 28.79%, i mod 3 = 0
 * 24.24%, Aborted test because unable to satisfy integers().filter(lambda x: x % 2 == 0)
 * 15.91%, i mod 3 = 1
 - Stopped because settings.max_examples=100

Arguments to event can be any hashable type, but two events will be considered the same
if they are the same when converted to a string with str [https://docs.python.org/3/library/stdtypes.html#str].

Making assumptions

Sometimes Hypothesis doesn’t give you exactly the right sort of data you want - it’s
mostly of the right shape, but some examples won’t work and you don’t want to care about
them. You can just ignore these by aborting the test early, but this runs the risk of
accidentally testing a lot less than you think you are. Also it would be nice to spend
less time on bad examples - if you’re running 100 examples per test (the default) and
it turns out 70 of those examples don’t match your needs, that’s a lot of wasted time.

	
hypothesis.assume(condition)

	Calling assume is like an assert [https://docs.python.org/3/reference/simple_stmts.html#assert] that marks
the example as bad, rather than failing the test.

This allows you to specify properties that you assume will be
true, and let Hypothesis try to avoid similar examples in future.

For example suppose you had the following test:

@given(floats())
def test_negation_is_self_inverse(x):
 assert x == -(-x)

Running this gives us:

Falsifying example: test_negation_is_self_inverse(x=float('nan'))
AssertionError

This is annoying. We know about NaN [https://docs.python.org/3/library/math.html]
and don’t really care about it, but as soon as Hypothesis
finds a NaN example it will get distracted by that and tell us about it. Also
the test will fail and we want it to pass.

So let’s block off this particular example:

from math import isnan

@given(floats())
def test_negation_is_self_inverse_for_non_nan(x):
 assume(not isnan(x))
 assert x == -(-x)

And this passes without a problem.

In order to avoid the easy trap where you assume a lot more than you intended, Hypothesis
will fail a test when it can’t find enough examples passing the assumption.

If we’d written:

@given(floats())
def test_negation_is_self_inverse_for_non_nan(x):
 assume(False)
 assert x == -(-x)

Then on running we’d have got the exception:

Unsatisfiable: Unable to satisfy assumptions of hypothesis test_negation_is_self_inverse_for_non_nan. Only 0 examples considered satisfied assumptions

How good is assume?

Hypothesis has an adaptive exploration strategy to try to avoid things which falsify
assumptions, which should generally result in it still being able to find examples in
hard to find situations.

Suppose we had the following:

@given(lists(integers()))
def test_sum_is_positive(xs):
 assert sum(xs) > 0

Unsurprisingly this fails and gives the falsifying example [].

Adding assume(xs) to this removes the trivial empty example and gives us [0].

Adding assume(all(x > 0 for x in xs)) and it passes: the sum of a list of
positive integers is positive.

The reason that this should be surprising is not that it doesn’t find a
counter-example, but that it finds enough examples at all.

In order to make sure something interesting is happening, suppose we wanted to
try this for long lists. e.g. suppose we added an assume(len(xs) > 10) to it.
This should basically never find an example: a naive strategy would find fewer
than one in a thousand examples, because if each element of the list is
negative with probability one-half, you’d have to have ten of these go the right
way by chance. In the default configuration Hypothesis gives up long before
it’s tried 1000 examples (by default it tries 200).

Here’s what happens if we try to run this:

@given(lists(integers()))
def test_sum_is_positive(xs):
 assume(len(xs) > 10)
 assume(all(x > 0 for x in xs))
 print(xs)
 assert sum(xs) > 0

In: test_sum_is_positive()

[17, 12, 7, 13, 11, 3, 6, 9, 8, 11, 47, 27, 1, 31, 1]
[6, 2, 29, 30, 25, 34, 19, 15, 50, 16, 10, 3, 16]
[25, 17, 9, 19, 15, 2, 2, 4, 22, 10, 10, 27, 3, 1, 14, 17, 13, 8, 16, 9, 2, ...]
[17, 65, 78, 1, 8, 29, 2, 79, 28, 18, 39]
[13, 26, 8, 3, 4, 76, 6, 14, 20, 27, 21, 32, 14, 42, 9, 24, 33, 9, 5, 15, ...]
[2, 1, 2, 2, 3, 10, 12, 11, 21, 11, 1, 16]

As you can see, Hypothesis doesn’t find many examples here, but it finds some - enough to
keep it happy.

In general if you can shape your strategies better to your tests you should - for example
integers(1, 1000) is a lot better than
assume(1 <= x <= 1000), but assume will take you a long way if you can’t.

Defining strategies

The type of object that is used to explore the examples given to your test
function is called a SearchStrategy.
These are created using the functions
exposed in the hypothesis.strategies module.

Many of these strategies expose a variety of arguments you can use to customize
generation. For example for integers you can specify min and max values of
integers you want.
If you want to see exactly what a strategy produces you can ask for an example:

>>> integers(min_value=0, max_value=10).example()
1

Many strategies are built out of other strategies. For example, if you want
to define a tuple you need to say what goes in each element:

>>> from hypothesis.strategies import tuples
>>> tuples(integers(), integers()).example()
(-24597, 12566)

Further details are available in a separate document.

The gory details of given parameters

	
hypothesis.given(*_given_arguments, **_given_kwargs)

	A decorator for turning a test function that accepts arguments into a
randomized test.

This is the main entry point to Hypothesis.

The @given decorator may be used to specify
which arguments of a function should be parametrized over. You can use
either positional or keyword arguments, but not a mixture of both.

For example all of the following are valid uses:

@given(integers(), integers())
def a(x, y):
 pass

@given(integers())
def b(x, y):
 pass

@given(y=integers())
def c(x, y):
 pass

@given(x=integers())
def d(x, y):
 pass

@given(x=integers(), y=integers())
def e(x, **kwargs):
 pass

@given(x=integers(), y=integers())
def f(x, *args, **kwargs):
 pass

class SomeTest(TestCase):
 @given(integers())
 def test_a_thing(self, x):
 pass

The following are not:

@given(integers(), integers(), integers())
def g(x, y):
 pass

@given(integers())
def h(x, *args):
 pass

@given(integers(), x=integers())
def i(x, y):
 pass

@given()
def j(x, y):
 pass

The rules for determining what are valid uses of given are as follows:

	You may pass any keyword argument to given.

	Positional arguments to given are equivalent to the rightmost named
arguments for the test function.

	Positional arguments may not be used if the underlying test function has
varargs, arbitrary keywords, or keyword-only arguments.

	Functions tested with given may not have any defaults.

The reason for the “rightmost named arguments” behaviour is so that
using @given with instance methods works: self
will be passed to the function as normal and not be parametrized over.

The function returned by given has all the same arguments as the original
test, minus those that are filled in by @given.
Check the notes on framework compatibility
to see how this affects other testing libraries you may be using.

Targeted example generation

Targeted property-based testing combines the advantages of both search-based
and property-based testing. Instead of being completely random, T-PBT uses
a search-based component to guide the input generation towards values that
have a higher probability of falsifying a property. This explores the input
space more effectively and requires fewer tests to find a bug or achieve a
high confidence in the system being tested than random PBT.
(Löscher and Sagonas [http://proper.softlab.ntua.gr/Publications.html])

This is not always a good idea - for example calculating the search metric
might take time better spent running more uniformly-random test cases, or your
target metric might accidentally lead Hypothesis away from bugs - but if
there is a natural metric like “floating-point error”, “load factor” or
“queue length”, we encourage you to experiment with targeted testing.

	
hypothesis.target(observation, *, label='')

	Calling this function with an int or float observation gives it feedback
with which to guide our search for inputs that will cause an error, in
addition to all the usual heuristics. Observations must always be finite.

Hypothesis will try to maximize the observed value over several examples;
almost any metric will work so long as it makes sense to increase it.
For example, -abs(error) is a metric that increases as error
approaches zero.

Example metrics:

	Number of elements in a collection, or tasks in a queue

	Mean or maximum runtime of a task (or both, if you use label)

	Compression ratio for data (perhaps per-algorithm or per-level)

	Number of steps taken by a state machine

The optional label argument can be used to distinguish between
and therefore separately optimise distinct observations, such as the
mean and standard deviation of a dataset. It is an error to call
target() with any label more than once per test case.

Note

The more examples you run, the better this technique works.

As a rule of thumb, the targeting effect is noticeable above
max_examples=1000,
and immediately obvious by around ten thousand examples
per label used by your test.

Test statistics include the best score seen for each label,
which can help avoid the threshold problem [https://hypothesis.works/articles/threshold-problem/] when the minimal
example shrinks right down to the threshold of failure (issue #2180 [https://github.com/HypothesisWorks/hypothesis/issues/2180]).

from hypothesis import given, strategies as st, target

@given(st.floats(0, 1e100), st.floats(0, 1e100), st.floats(0, 1e100))
def test_associativity_with_target(a, b, c):
 ab_c = (a + b) + c
 a_bc = a + (b + c)
 difference = abs(ab_c - a_bc)
 target(difference) # Without this, the test almost always passes
 assert difference < 2.0

We recommend that users also skim the papers introducing targeted PBT;
from ISSTA 2017 [http://proper.softlab.ntua.gr/papers/issta2017.pdf]
and ICST 2018 [http://proper.softlab.ntua.gr/papers/icst2018.pdf].
For the curious, the initial implementation in Hypothesis uses hill-climbing
search via a mutating fuzzer, with some tactics inspired by simulated
annealing to avoid getting stuck and endlessly mutating a local maximum.

Custom function execution

Hypothesis provides you with a hook that lets you control how it runs
examples.

This lets you do things like set up and tear down around each example, run
examples in a subprocess, transform coroutine tests into normal tests, etc.
For example, TransactionTestCase in the
Django extra runs each example in a separate database transaction.

The way this works is by introducing the concept of an executor. An executor
is essentially a function that takes a block of code and run it. The default
executor is:

def default_executor(function):
 return function()

You define executors by defining a method execute_example on a class. Any
test methods on that class with @given used on them will use
self.execute_example as an executor with which to run tests. For example,
the following executor runs all its code twice:

from unittest import TestCase

class TestTryReallyHard(TestCase):
 @given(integers())
 def test_something(self, i):
 perform_some_unreliable_operation(i)

 def execute_example(self, f):
 f()
 return f()

Note: The functions you use in map, etc. will run inside the executor. i.e.
they will not be called until you invoke the function passed to execute_example.

An executor must be able to handle being passed a function which returns None,
otherwise it won’t be able to run normal test cases. So for example the following
executor is invalid:

from unittest import TestCase

class TestRunTwice(TestCase):
 def execute_example(self, f):
 return f()()

and should be rewritten as:

from unittest import TestCase

class TestRunTwice(TestCase):
 def execute_example(self, f):
 result = f()
 if callable(result):
 result = result()
 return result

An alternative hook is provided for use by test runner extensions such as
pytest-trio [https://pypi.org/project/pytest-trio/], which cannot use the execute_example method.
This is not recommended for end-users - it is better to write a complete
test function directly, perhaps by using a decorator to perform the same
transformation before applying @given.

@given(x=integers())
@pytest.mark.trio
async def test(x): ...

Illustrative code, inside the pytest-trio plugin
test.hypothesis.inner_test = lambda x: trio.run(test, x)

For authors of test runners however, assigning to the inner_test attribute
of the hypothesis attribute of the test will replace the interior test.

Note

The new inner_test must accept and pass through all the *args
and **kwargs expected by the original test.

If the end user has also specified a custom executor using the
execute_example method, it - and all other execution-time logic - will
be applied to the new inner test assigned by the test runner.

Making random code deterministic

While Hypothesis’ example generation can be used for nondeterministic tests,
debugging anything nondeterministic is usually a very frustrating exercise.
To make things worse, our example shrinking relies on the same input
causing the same failure each time - though we show the un-shrunk failure
and a decent error message if it doesn’t.

By default, Hypothesis will handle the global random and numpy.random
random number generators for you, and you can register others:

	
hypothesis.register_random(r)

	Register (a weakref to) the given Random-like instance for management by
Hypothesis.

You can pass instances of structural subtypes of random.Random
(i.e., objects with seed, getstate, and setstate methods) to
register_random(r) to have their states seeded and restored in the same
way as the global PRNGs from the random and numpy.random modules.

All global PRNGs, from e.g. simulation or scheduling frameworks, should
be registered to prevent flaky tests. Hypothesis will ensure that the
PRNG state is consistent for all test runs, always seeding them to zero and
restoring the previous state after the test, or, reproducibly varied if you
choose to use the random_module() strategy.

register_random only makes weakrefs [https://docs.python.org/3/library/weakref.html#module-weakref] to r,
thus r will only be managed by Hypothesis as long as it has active
references elsewhere at runtime. The pattern register_random(MyRandom())
will raise a ReferenceError to help protect users from this issue.
This check does not occur for the PyPy interpreter. See the following example for
an illustration of this issue

def my_BROKEN_hook():
 r = MyRandomLike()

 # `r` will be garbage collected after the hook resolved
 # and Hypothesis will 'forget' that it was registered
 register_random(r) # Hypothesis will emit a warning

rng = MyRandomLike()

def my_WORKING_hook():
 register_random(rng)

Inferred strategies

In some cases, Hypothesis can work out what to do when you omit arguments.
This is based on introspection, not magic, and therefore has well-defined
limits.

builds() will check the signature of the
target (using signature() [https://docs.python.org/3/library/inspect.html#inspect.signature]).
If there are required arguments with type annotations and
no strategy was passed to builds(),
from_type() is used to fill them in.
You can also pass the value ... (Ellipsis) as a keyword
argument, to force this inference for arguments with a default value.

>>> def func(a: int, b: str):
... return [a, b]
...
>>> builds(func).example()
[-6993, '']

	
hypothesis.infer

	

@given does not perform any implicit inference
for required arguments, as this would break compatibility with pytest fixtures.
... (Ellipsis [https://docs.python.org/3/library/constants.html#Ellipsis]), can be used as a keyword argument to explicitly fill
in an argument from its type annotation. You can also use the hypothesis.infer
alias if writing a literal ... seems too weird.

@given(a=...) # or @given(a=infer)
def test(a: int):
 pass

is equivalent to
@given(a=from_type(int))
def test(a):
 pass

@given(...) can also be specified to fill all arguments from their type annotations.

@given(...)
def test(a: int, b: str):
 pass

is equivalent to
@given(a=..., b=...)
def test(a, b):
 pass

Limitations

Hypothesis does not inspect PEP 484 [https://peps.python.org/pep-0484/] type comments at runtime. While
from_type() will work as usual, inference in
builds() and @given
will only work if you manually create the __annotations__ attribute
(e.g. by using @annotations(...) and @returns(...) decorators).

The typing [https://docs.python.org/3/library/typing.html#module-typing] module changes between different Python releases,
including at minor versions. These
are all supported on a best-effort basis,
but you may encounter problems. Please report them to us, and consider
updating to a newer version of Python as a workaround.

Type annotations in Hypothesis

If you install Hypothesis and use mypy [https://pypi.org/project/mypy/] 0.590+, or another
PEP 561 [https://peps.python.org/pep-0561/]-compatible tool, the type checker should automatically pick
up our type hints.

Note

Hypothesis’ type hints may make breaking changes between minor releases.

Upstream tools and conventions about type hints remain in flux - for
example the typing [https://docs.python.org/3/library/typing.html#module-typing] module itself is provisional - and we plan to support the latest
version of this ecosystem, as well as older versions where practical.

We may also find more precise ways to describe the type of various
interfaces, or change their type and runtime behaviour together in a way
which is otherwise backwards-compatible. We often omit type hints for
deprecated features or arguments, as an additional form of warning.

There are known issues inferring the type of examples generated by
deferred(), recursive(),
one_of(), dictionaries(),
and fixed_dictionaries().
We will fix these, and require correspondingly newer versions of Mypy for type
hinting, as the ecosystem improves.

Writing downstream type hints

Projects that provide Hypothesis strategies and use
type hints may wish to annotate their strategies too. This is a
supported use-case, again on a best-effort provisional basis. For example:

def foo_strategy() -> SearchStrategy[Foo]: ...

	
class hypothesis.strategies.SearchStrategy

	

SearchStrategy is the type of all strategy
objects. It is a generic type, and covariant in the type of the examples
it creates. For example:

	integers() is of type SearchStrategy[int].

	lists(integers()) is of type SearchStrategy[List[int]].

	SearchStrategy[Dog] is a subtype of SearchStrategy[Animal]
if Dog is a subtype of Animal (as seems likely).

Warning

SearchStrategy should only be used
in type hints. Please do not inherit from, compare to, or otherwise
use it in any way outside of type hints. The only supported way to
construct objects of this type is to use the functions provided by the
hypothesis.strategies module!

The Hypothesis pytest plugin

Hypothesis includes a tiny plugin to improve integration with pytest [https://pypi.org/project/pytest/],
which is activated by default (but does not affect other test runners).
It aims to improve the integration between Hypothesis and Pytest by
providing extra information and convenient access to config options.

	pytest --hypothesis-show-statistics can be used to
display test and data generation statistics.

	pytest --hypothesis-profile=<profile name> can be used to
load a settings profile.

	pytest --hypothesis-verbosity=<level name> can be used to
override the current verbosity level.

	pytest --hypothesis-seed=<an int> can be used to
reproduce a failure with a particular seed.

	pytest --hypothesis-explain can be used to
temporarily enable the explain phase.

Finally, all tests that are defined with Hypothesis automatically have
@pytest.mark.hypothesis applied to them. See here for information
on working with markers [https://docs.pytest.org/en/stable/example/markers.html#mark-examples].

Note

Pytest will load the plugin automatically if Hypothesis is installed.
You don’t need to do anything at all to use it.

Use with external fuzzers

Tip

Want an integrated workflow for your team’s local tests, CI, and continuous fuzzing?

Use HypoFuzz [https://hypofuzz.com/] to fuzz your whole test suite,
and find more bugs without more tests!

Sometimes, you might want to point a traditional fuzzer such as
python-afl [https://github.com/jwilk/python-afl], pythonfuzz [https://pypi.org/project/pythonfuzz/],
or Google’s atheris [https://pypi.org/project/atheris/] (for Python and native extensions)
at your code. Wouldn’t it be nice if you could use any of your
@given tests as fuzz targets, instead of
converting bytestrings into your objects by hand?

@given(st.text())
def test_foo(s): ...

This is a traditional fuzz target - call it with a bytestring,
or a binary IO object, and it runs the test once.
fuzz_target = test_foo.hypothesis.fuzz_one_input

For example:
fuzz_target(b"\x00\x00\x00\x00\x00\x00\x00\x00")
fuzz_target(io.BytesIO(...))

Depending on the input to fuzz_one_input, one of three things will happen:

	If the bytestring was invalid, for example because it was too short or
failed a filter or assume() too many times,
fuzz_one_input returns None.

	If the bytestring was valid and the test passed, fuzz_one_input returns
a canonicalised and pruned buffer which will replay that test case. This
is provided as an option to improve the performance of mutating fuzzers,
but can safely be ignored.

	If the test failed, i.e. raised an exception, fuzz_one_input will add
the pruned buffer to the Hypothesis example database
and then re-raise that exception. All you need to do to reproduce, minimize,
and de-duplicate all the failures found via fuzzing is run your test suite!

Note that the interpretation of both input and output bytestrings is specific
to the exact version of Hypothesis you are using and the strategies given to
the test, just like the example database and
@reproduce_failure decorator.

Interaction with settings

fuzz_one_input uses just enough of Hypothesis’ internals to drive your
test function with a fuzzer-provided bytestring, and most settings therefore
have no effect in this mode. We recommend running your tests the usual way
before fuzzing to get the benefits of healthchecks, as well as afterwards to
replay, shrink, deduplicate, and report whatever errors were discovered.

	The database setting is used by fuzzing mode -
adding failures to the database to be replayed when you next run your tests
is our preferred reporting mechanism and response to
the ‘fuzzer taming’ problem [https://blog.regehr.org/archives/925].

	The verbosity and
stateful_step_count settings work as usual.

The deadline, derandomize, max_examples, phases, print_blob,
report_multiple_bugs, and suppress_health_check settings do not affect
fuzzing mode.

Thread-Safety Policy

As discussed in issue #2719 [https://github.com/HypothesisWorks/hypothesis/issues/2719], Hypothesis is not truly thread-safe and that’s
unlikely to change in the future. This policy therefore describes what you
can expect if you use Hypothesis with multiple threads.

Running tests in multiple processes, e.g. with pytest -n auto, is fully
supported and we test this regularly in CI - thanks to process isolation, we only
need to ensure that DirectoryBasedExampleDatabase
can’t tread on its own toes too badly. If you find a bug here we will fix it ASAP.

Running separate tests in multiple threads is not something we design or test
for, and is not formally supported. That said, anecdotally it does mostly work and
we would like it to keep working - we accept reasonable patches and low-priority
bug reports. The main risks here are global state, shared caches, and cached strategies.

Using multiple threads within a single test , or running a single test simultaneously
in multiple threads, makes it pretty easy to trigger internal errors. We usually accept
patches for such issues unless readability or single-thread performance suffer.

Hypothesis assumes that tests are single-threaded, or do a sufficiently-good job of
pretending to be single-threaded. Tests that use helper threads internally should be OK,
but the user must be careful to ensure that test outcomes are still deterministic.
In particular it counts as nondeterministic if helper-thread timing changes the sequence
of dynamic draws using e.g. the data().

Interacting with any Hypothesis APIs from helper threads might do weird/bad things,
so avoid that too - we rely on thread-local variables in a few places, and haven’t
explicitly tested/audited how they respond to cross-thread API calls. While
data() and equivalents are the most obvious danger,
other APIs might also be subtly affected.

Settings

Hypothesis tries to have good defaults for its behaviour, but sometimes that’s
not enough and you need to tweak it.

The mechanism for doing this is the settings object.
You can set up a @given based test to use this using a settings
decorator:

@given invocation is as follows:

from hypothesis import given, settings

@given(integers())
@settings(max_examples=500)
def test_this_thoroughly(x):
 pass

This uses a settings object which causes the test to receive a much larger
set of examples than normal.

This may be applied either before or after the given and the results are
the same. The following is exactly equivalent:

from hypothesis import given, settings

@settings(max_examples=500)
@given(integers())
def test_this_thoroughly(x):
 pass

Available settings

	
class hypothesis.settings(

	parent=None,

	*,

	max_examples=not_set,

	derandomize=not_set,

	database=not_set,

	verbosity=not_set,

	phases=not_set,

	stateful_step_count=not_set,

	report_multiple_bugs=not_set,

	suppress_health_check=not_set,

	deadline=not_set,

	print_blob=not_set,

	backend=not_set,

)

	A settings object configures options including verbosity, runtime controls,
persistence, determinism, and more.

Default values are picked up from the settings.default object and
changes made there will be picked up in newly created settings.

	
backend

	EXPERIMENTAL AND UNSTABLE - see Alternative backends for Hypothesis.
The importable name of a backend which Hypothesis should use to generate primitive
types. We aim to support heuristic-random, solver-based, and fuzzing-based backends.

default value: (dynamically calculated)

	
database

	An instance of ExampleDatabase that will be
used to save examples to and load previous examples from. May be None
in which case no storage will be used.

See the example database documentation for a list of built-in
example database implementations, and how to define custom implementations.

default value: (dynamically calculated)

	
deadline

	If set, a duration (as timedelta, or integer or float number of milliseconds)
that each individual example (i.e. each time your test
function is called, not the whole decorated test) within a test is not
allowed to exceed. Tests which take longer than that may be converted into
errors (but will not necessarily be if close to the deadline, to allow some
variability in test run time).

Set this to None to disable this behaviour entirely.

default value: timedelta(milliseconds=200)

	
derandomize

	If True, seed Hypothesis’ random number generator using a hash of the test
function, so that every run will test the same set of examples until you
update Hypothesis, Python, or the test function.

This allows you to check for regressions and look for bugs [https://blog.nelhage.com/post/two-kinds-of-testing/] using
separate settings profiles - for example running
quick deterministic tests on every commit, and a longer non-deterministic
nightly testing run.

default value: False

	
max_examples

	Once this many satisfying examples have been considered without finding any
counter-example, Hypothesis will stop looking.

Note that we might call your test function fewer times if we find a bug early
or can tell that we’ve exhausted the search space; or more if we discard some
examples due to use of .filter(), assume(), or a few other things that can
prevent the test case from completing successfully.

The default value is chosen to suit a workflow where the test will be part of
a suite that is regularly executed locally or on a CI server, balancing total
running time against the chance of missing a bug.

If you are writing one-off tests, running tens of thousands of examples is
quite reasonable as Hypothesis may miss uncommon bugs with default settings.
For very complex code, we have observed Hypothesis finding novel bugs after
several million examples while testing SymPy [https://pypi.org/project/SymPy/].
If you are running more than 100k examples for a test, consider using our
integration for coverage-guided fuzzing - it really
shines when given minutes or hours to run.

default value: 100

	
phases

	Control which phases should be run. See the full documentation for more details

default value: (Phase.explicit, Phase.reuse, Phase.generate, Phase.target, Phase.shrink, Phase.explain)

	
print_blob

	If set to True, Hypothesis will print code for failing examples that can be used with
@reproduce_failure to reproduce the failing example.
The default is True if the CI or TF_BUILD env vars are set, False otherwise.

default value: (dynamically calculated)

	
report_multiple_bugs

	Because Hypothesis runs the test many times, it can sometimes find multiple
bugs in a single run. Reporting all of them at once is usually very useful,
but replacing the exceptions can occasionally clash with debuggers.
If disabled, only the exception with the smallest minimal example is raised.

default value: True

	
stateful_step_count

	Number of steps to run a stateful program for before giving up on it breaking.

default value: 50

	
suppress_health_check

	A list of HealthCheck items to disable.

default value: ()

	
verbosity

	Control the verbosity level of Hypothesis messages

default value: Verbosity.normal

Controlling what runs

Hypothesis divides tests into logically distinct phases:

	Running explicit examples provided with the @example decorator.

	Rerunning a selection of previously failing examples to reproduce a previously seen error.

	Generating new examples.

	Mutating examples for targeted property-based testing (requires generate phase).

	Attempting to shrink an example found in previous phases (other than phase 1 - explicit examples cannot be shrunk).
This turns potentially large and complicated examples which may be hard to read into smaller and simpler ones.

	Attempting to explain why your test failed (requires shrink phase).

Note

The explain phase has two parts, each of which is best-effort - if Hypothesis can’t
find a useful explanation, we’ll just print the minimal failing example.

Following the first failure, Hypothesis will (usually) track which
lines of code are always run on failing but never on passing inputs.
This relies on sys.settrace() [https://docs.python.org/3/library/sys.html#sys.settrace], and is therefore automatically disabled on
PyPy or if you are using coverage [https://pypi.org/project/coverage/] or a debugger. If there are no clearly
suspicious lines of code, we refuse the temptation to guess [https://peps.python.org/pep-0020/].

After shrinking to a minimal failing example, Hypothesis will try to find parts of
the example – e.g. separate args to @given() – which
can vary freely without changing the result of that minimal failing example.
If the automated experiments run without finding a passing variation, we leave a
comment in the final report:

test_x_divided_by_y(
 x=0, # or any other generated value
 y=0,
)

Just remember that the lack of an explanation sometimes just means that Hypothesis
couldn’t efficiently find one, not that no explanation (or simpler failing example)
exists.

The phases setting provides you with fine grained control over which of these run,
with each phase corresponding to a value on the Phase enum:

	
class hypothesis.Phase(value)

	An enumeration.

	
explicit = 0

	controls whether explicit examples are run.

	
reuse = 1

	controls whether previous examples will be reused.

	
generate = 2

	controls whether new examples will be generated.

	
target = 3

	controls whether examples will be mutated for targeting.

	
shrink = 4

	controls whether examples will be shrunk.

	
explain = 5

	controls whether Hypothesis attempts to explain test failures.

The phases argument accepts a collection with any subset of these. e.g.
settings(phases=[Phase.generate, Phase.shrink]) will generate new examples
and shrink them, but will not run explicit examples or reuse previous failures,
while settings(phases=[Phase.explicit]) will only run the explicit
examples.

Seeing intermediate result

To see what’s going on while Hypothesis runs your tests, you can turn
up the verbosity setting.

>>> from hypothesis import find, settings, Verbosity
>>> from hypothesis.strategies import lists, integers
>>> @given(lists(integers()))
... @settings(verbosity=Verbosity.verbose)
... def f(x):
... assert not any(x)
... f()
Trying example: []
Falsifying example: [-1198601713, -67, 116, -29578]
Shrunk example to [-1198601713]
Shrunk example to [-1198601600]
Shrunk example to [-1191228800]
Shrunk example to [-8421504]
Shrunk example to [-32896]
Shrunk example to [-128]
Shrunk example to [64]
Shrunk example to [32]
Shrunk example to [16]
Shrunk example to [8]
Shrunk example to [4]
Shrunk example to [3]
Shrunk example to [2]
Shrunk example to [1]
[1]

The four levels are quiet, normal, verbose and debug. normal is the default,
while in quiet mode Hypothesis will not print anything out, not even the final
falsifying example. debug is basically verbose but a bit more so. You probably
don’t want it.

If you are using pytest [https://pypi.org/project/pytest/], you may also need to
disable output capturing for passing tests [https://docs.pytest.org/en/stable/how-to/capture-stdout-stderr.html].

Building settings objects

Settings can be created by calling settings with any of the available settings
values. Any absent ones will be set to defaults:

>>> from hypothesis import settings
>>> settings().max_examples
100
>>> settings(max_examples=10).max_examples
10

You can also pass a ‘parent’ settings object as the first argument,
and any settings you do not specify as keyword arguments will be
copied from the parent settings:

>>> parent = settings(max_examples=10)
>>> child = settings(parent, deadline=None)
>>> parent.max_examples == child.max_examples == 10
True
>>> parent.deadline
200
>>> child.deadline is None
True

Default settings

At any given point in your program there is a current default settings,
available as settings.default. As well as being a settings object in its own
right, all newly created settings objects which are not explicitly based off
another settings are based off the default, so will inherit any values that are
not explicitly set from it.

You can change the defaults by using profiles.

Settings profiles

Depending on your environment you may want different default settings.
For example: during development you may want to lower the number of examples
to speed up the tests. However, in a CI environment you may want more examples
so you are more likely to find bugs.

Hypothesis allows you to define different settings profiles. These profiles
can be loaded at any time.

	
static settings.register_profile(name, parent=None, **kwargs)

	Registers a collection of values to be used as a settings profile.

Settings profiles can be loaded by name - for example, you might
create a ‘fast’ profile which runs fewer examples, keep the ‘default’
profile, and create a ‘ci’ profile that increases the number of
examples and uses a different database to store failures.

The arguments to this method are exactly as for
settings: optional parent settings, and
keyword arguments for each setting that will be set differently to
parent (or settings.default, if parent is None).

	
static settings.get_profile(name)

	Return the profile with the given name.

	
static settings.load_profile(name)

	Loads in the settings defined in the profile provided.

If the profile does not exist, InvalidArgument will be raised.
Any setting not defined in the profile will be the library
defined default for that setting.

Loading a profile changes the default settings but will not change the behaviour
of tests that explicitly change the settings.

>>> from hypothesis import settings
>>> settings.register_profile("ci", max_examples=1000)
>>> settings().max_examples
100
>>> settings.load_profile("ci")
>>> settings().max_examples
1000

Instead of loading the profile and overriding the defaults you can retrieve profiles for
specific tests.

>>> settings.get_profile("ci").max_examples
1000

Optionally, you may define the environment variable to load a profile for you.
This is the suggested pattern for running your tests on CI.
The code below should run in a conftest.py or any setup/initialization section of your test suite.
If this variable is not defined the Hypothesis defined defaults will be loaded.

>>> import os
>>> from hypothesis import settings, Verbosity
>>> settings.register_profile("ci", max_examples=1000)
>>> settings.register_profile("dev", max_examples=10)
>>> settings.register_profile("debug", max_examples=10, verbosity=Verbosity.verbose)
>>> settings.load_profile(os.getenv("HYPOTHESIS_PROFILE", "default"))

If you are using the hypothesis pytest plugin and your profiles are registered
by your conftest you can load one with the command line option --hypothesis-profile.

$ pytest tests --hypothesis-profile <profile-name>

Health checks

Hypothesis’ health checks are designed to detect and warn you about performance
problems where your tests are slow, inefficient, or generating very large examples.

If this is expected, e.g. when generating large arrays or dataframes, you can selectively
disable them with the suppress_health_check setting.
The argument for this parameter is a list with elements drawn from any of
the class-level attributes of the HealthCheck class.
Using a value of list(HealthCheck) will disable all health checks.

	
class hypothesis.HealthCheck(value)

	Arguments for suppress_health_check.

Each member of this enum is a type of health check to suppress.

	
data_too_large = 1

	Checks if too many examples are aborted for being too large.

This is measured by the number of random choices that Hypothesis makes
in order to generate something, not the size of the generated object.
For example, choosing a 100MB object from a predefined list would take
only a few bits, while generating 10KB of JSON from scratch might trigger
this health check.

	
filter_too_much = 2

	Check for when the test is filtering out too many examples, either
through use of assume() or filter(),
or occasionally for Hypothesis internal reasons.

	
too_slow = 3

	Check for when your data generation is extremely slow and likely to hurt
testing.

	
return_value = 5

	Deprecated; we always error if a test returns a non-None value.

	
large_base_example = 7

	Checks if the natural example to shrink towards is very large.

	
not_a_test_method = 8

	Deprecated; we always error if @given is applied
to a method defined by unittest.TestCase [https://docs.python.org/3/library/unittest.html#unittest.TestCase] (i.e. not a test).

	
function_scoped_fixture = 9

	Checks if @given has been applied to a test
with a pytest function-scoped fixture. Function-scoped fixtures run once
for the whole function, not once per example, and this is usually not what
you want.

Because of this limitation, tests that need to set up or reset
state for every example need to do so manually within the test itself,
typically using an appropriate context manager.

Suppress this health check only in the rare case that you are using a
function-scoped fixture that does not need to be reset between individual
examples, but for some reason you cannot use a wider fixture scope
(e.g. session scope, module scope, class scope).

This check requires the Hypothesis pytest plugin,
which is enabled by default when running Hypothesis inside pytest.

	
differing_executors = 10

	Checks if @given has been applied to a test
which is executed by different executors.
If your test function is defined as a method on a class, that class will be
your executor, and subclasses executing an inherited test is a common way
for things to go wrong.

The correct fix is often to bring the executor instance under the control
of hypothesis by explicit parametrization over, or sampling from,
subclasses, or to refactor so that @given is
specified on leaf subclasses.

What you can generate and how

Most things should be easy to generate and everything should be possible.

To support this principle Hypothesis provides strategies for most built-in
types with arguments to constrain or adjust the output, as well as higher-order
strategies that can be composed to generate more complex types.

This document is a guide to what strategies are available for generating data
and how to build them. Strategies have a variety of other important internal
features, such as how they simplify, but the data they can generate is the only
public part of their API.

Core strategies

Functions for building strategies are all available in the hypothesis.strategies
module. The salient functions from it are as follows:

	
hypothesis.strategies.binary(*, min_size=0, max_size=None)

	Generates bytes [https://docs.python.org/3/library/stdtypes.html#bytes].

The generated bytes [https://docs.python.org/3/library/stdtypes.html#bytes] will have a length of at least min_size
and at most max_size. If max_size is None there is no upper limit.

Examples from this strategy shrink towards smaller strings and lower byte
values.

	
hypothesis.strategies.booleans()

	Returns a strategy which generates instances of bool [https://docs.python.org/3/library/functions.html#bool].

Examples from this strategy will shrink towards False (i.e.
shrinking will replace True with False where possible).

	
hypothesis.strategies.builds(target, /, *args, **kwargs)

	Generates values by drawing from args and kwargs and passing
them to the callable (provided as the first positional argument) in the
appropriate argument position.

e.g. builds(target, integers(), flag=booleans()) would draw an
integer i and a boolean b and call target(i, flag=b).

If the callable has type annotations, they will be used to infer a strategy
for required arguments that were not passed to builds. You can also tell
builds to infer a strategy for an optional argument by passing ...
(Ellipsis [https://docs.python.org/3/library/constants.html#Ellipsis]) as a keyword argument to builds, instead of a strategy for
that argument to the callable.

If the callable is a class defined with attrs [https://pypi.org/project/attrs/], missing required
arguments will be inferred from the attribute on a best-effort basis,
e.g. by checking attrs standard validators [https://www.attrs.org/en/stable/api.html#api-validators].
Dataclasses are handled natively by the inference from type hints.

Examples from this strategy shrink by shrinking the argument values to
the callable.

	
hypothesis.strategies.characters(

	*,

	codec=None,

	min_codepoint=None,

	max_codepoint=None,

	categories=None,

	exclude_categories=None,

	exclude_characters=None,

	include_characters=None,

)

	Generates characters, length-one str [https://docs.python.org/3/library/stdtypes.html#str]ings,
following specified filtering rules.

	When no filtering rules are specified, any character can be produced.

	If min_codepoint or max_codepoint is specified, then only
characters having a codepoint in that range will be produced.

	If categories is specified, then only characters from those
Unicode categories will be produced. This is a further restriction,
characters must also satisfy min_codepoint and max_codepoint.

	If exclude_categories is specified, then any character from those
categories will not be produced. You must not pass both categories
and exclude_categories; these arguments are alternative ways to
specify exactly the same thing.

	If include_characters is specified, then any additional characters
in that list will also be produced.

	If exclude_characters is specified, then any characters in
that list will be not be produced. Any overlap between
include_characters and exclude_characters will raise an
exception.

	If codec is specified, only characters in the specified codec encodings [https://docs.python.org/3/library/codecs.html#encodings-and-unicode]
will be produced.

The _codepoint arguments must be integers between zero and
sys.maxunicode [https://docs.python.org/3/library/sys.html#sys.maxunicode]. The _characters arguments must be
collections of length-one unicode strings, such as a unicode string.

The _categories arguments must be used to specify either the
one-letter Unicode major category or the two-letter Unicode
general category [https://wikipedia.org/wiki/Unicode_character_property]. For example, ('Nd', 'Lu') signifies “Number,
decimal digit” and “Letter, uppercase”. A single letter (‘major category’)
can be given to match all corresponding categories, for example 'P'
for characters in any punctuation category.

We allow codecs from the codecs [https://docs.python.org/3/library/codecs.html#module-codecs] module and their aliases, platform
specific and user-registered codecs if they are available, and
python-specific text encodings [https://docs.python.org/3/library/codecs.html#python-specific-encodings] (but not text or binary transforms).
include_characters which cannot be encoded using this codec will
raise an exception. If non-encodable codepoints or categories are
explicitly allowed, the codec argument will exclude them without
raising an exception.

Examples from this strategy shrink towards the codepoint for '0',
or the first allowable codepoint after it if '0' is excluded.

	
hypothesis.strategies.complex_numbers(

	*,

	min_magnitude=0,

	max_magnitude=None,

	allow_infinity=None,

	allow_nan=None,

	allow_subnormal=True,

	width=128,

)

	Returns a strategy that generates complex [https://docs.python.org/3/library/functions.html#complex]
numbers.

This strategy draws complex numbers with constrained magnitudes.
The min_magnitude and max_magnitude parameters should be
non-negative Real [https://docs.python.org/3/library/numbers.html#numbers.Real] numbers; a value
of None corresponds an infinite upper bound.

If min_magnitude is nonzero or max_magnitude is finite, it
is an error to enable allow_nan. If max_magnitude is finite,
it is an error to enable allow_infinity.

allow_infinity, allow_nan, and allow_subnormal are
applied to each part of the complex number separately, as for
floats().

The magnitude constraints are respected up to a relative error
of (around) floating-point epsilon, due to implementation via
the system sqrt function.

The width argument specifies the maximum number of bits of precision
required to represent the entire generated complex number.
Valid values are 32, 64 or 128, which correspond to the real and imaginary
components each having width 16, 32 or 64, respectively.
Passing width=64 will still use the builtin 128-bit
complex [https://docs.python.org/3/library/functions.html#complex] class, but always for values which can be
exactly represented as two 32-bit floats.

Examples from this strategy shrink by shrinking their real and
imaginary parts, as floats().

If you need to generate complex numbers with particular real and
imaginary parts or relationships between parts, consider using
builds(complex, ...) or
@composite respectively.

	
hypothesis.strategies.composite(f)

	Defines a strategy that is built out of potentially arbitrarily many
other strategies.

This is intended to be used as a decorator. See
the full documentation for more details
about how to use this function.

Examples from this strategy shrink by shrinking the output of each draw
call.

	
hypothesis.strategies.data()

	This isn’t really a normal strategy, but instead gives you an object
which can be used to draw data interactively from other strategies.

See the rest of the documentation for more
complete information.

Examples from this strategy do not shrink (because there is only one),
but the result of calls to each data.draw() call shrink as they normally would.

	
class hypothesis.strategies.DataObject

	This type only exists so that you can write type hints for tests using
the data() strategy. Do not use it directly!

	
hypothesis.strategies.dates(

	min_value=datetime.date.min,

	max_value=datetime.date.max,

)

	A strategy for dates between min_value and max_value.

Examples from this strategy shrink towards January 1st 2000.

	
hypothesis.strategies.datetimes(

	min_value=datetime.datetime.min,

	max_value=datetime.datetime.max,

	*,

	timezones=none(),

	allow_imaginary=True,

)

	A strategy for generating datetimes, which may be timezone-aware.

This strategy works by drawing a naive datetime between min_value
and max_value, which must both be naive (have no timezone).

timezones must be a strategy that generates either None, for naive
datetimes, or tzinfo [https://docs.python.org/3/library/datetime.html#datetime.tzinfo] objects for ‘aware’ datetimes.
You can construct your own, though we recommend using one of these built-in
strategies:

	with Python 3.9 or newer or backports.zoneinfo [https://pypi.org/project/backports.zoneinfo/]:
hypothesis.strategies.timezones();

	with dateutil [https://pypi.org/project/python-dateutil/]:
hypothesis.extra.dateutil.timezones(); or

	with pytz [https://pypi.org/project/pytz/]: hypothesis.extra.pytz.timezones().

You may pass allow_imaginary=False to filter out “imaginary” datetimes
which did not (or will not) occur due to daylight savings, leap seconds,
timezone and calendar adjustments, etc. Imaginary datetimes are allowed
by default, because malformed timestamps are a common source of bugs.

Examples from this strategy shrink towards midnight on January 1st 2000,
local time.

	
hypothesis.strategies.decimals(

	min_value=None,

	max_value=None,

	*,

	allow_nan=None,

	allow_infinity=None,

	places=None,

)

	Generates instances of decimal.Decimal [https://docs.python.org/3/library/decimal.html#decimal.Decimal], which may be:

	A finite rational number, between min_value and max_value.

	Not a Number, if allow_nan is True. None means “allow NaN, unless
min_value and max_value are not None”.

	Positive or negative infinity, if max_value and min_value
respectively are None, and allow_infinity is not False. None means
“allow infinity, unless excluded by the min and max values”.

Note that where floats have one NaN value, Decimals have four: signed,
and either quiet or signalling. See the decimal module docs [https://docs.python.org/3/library/decimal.html#special-values] for
more information on special values.

If places is not None, all finite values drawn from the strategy will
have that number of digits after the decimal place.

Examples from this strategy do not have a well defined shrink order but
try to maximize human readability when shrinking.

	
hypothesis.strategies.deferred(definition)

	A deferred strategy allows you to write a strategy that references other
strategies that have not yet been defined. This allows for the easy
definition of recursive and mutually recursive strategies.

The definition argument should be a zero-argument function that returns a
strategy. It will be evaluated the first time the strategy is used to
produce an example.

Example usage:

>>> import hypothesis.strategies as st
>>> x = st.deferred(lambda: st.booleans() | st.tuples(x, x))
>>> x.example()
(((False, (True, True)), (False, True)), (True, True))
>>> x.example()
True

Mutual recursion also works fine:

>>> a = st.deferred(lambda: st.booleans() | b)
>>> b = st.deferred(lambda: st.tuples(a, a))
>>> a.example()
True
>>> b.example()
(False, (False, ((False, True), False)))

Examples from this strategy shrink as they normally would from the strategy
returned by the definition.

	
hypothesis.strategies.dictionaries(

	keys,

	values,

	*,

	dict_class=<class 'dict'>,

	min_size=0,

	max_size=None,

)

	Generates dictionaries of type dict_class with keys drawn from the keys
argument and values drawn from the values argument.

The size parameters have the same interpretation as for
lists().

Examples from this strategy shrink by trying to remove keys from the
generated dictionary, and by shrinking each generated key and value.

	
class hypothesis.strategies.DrawFn

	This type only exists so that you can write type hints for functions
decorated with @composite.

@composite
def list_and_index(draw: DrawFn) -> Tuple[int, str]:
 i = draw(integers()) # type inferred as 'int'
 s = draw(text()) # type inferred as 'str'
 return i, s

	
hypothesis.strategies.emails(*, domains=domains())

	A strategy for generating email addresses as unicode strings. The
address format is specified in RFC 5322#section-3.4.1 [https://datatracker.ietf.org/doc/html/rfc5322.html#section-3.4.1]. Values shrink
towards shorter local-parts and host domains.

If domains is given then it must be a strategy that generates domain
names for the emails, defaulting to domains().

This strategy is useful for generating “user data” for tests, as
mishandling of email addresses is a common source of bugs.

	
hypothesis.strategies.fixed_dictionaries(mapping, *, optional=None)

	Generates a dictionary of the same type as mapping with a fixed set of
keys mapping to strategies. mapping must be a dict subclass.

Generated values have all keys present in mapping, in iteration order,
with the corresponding values drawn from mapping[key].

If optional is passed, the generated value may or may not contain each
key from optional and a value drawn from the corresponding strategy.
Generated values may contain optional keys in an arbitrary order.

Examples from this strategy shrink by shrinking each individual value in
the generated dictionary, and omitting optional key-value pairs.

	
hypothesis.strategies.floats(

	min_value=None,

	max_value=None,

	*,

	allow_nan=None,

	allow_infinity=None,

	allow_subnormal=None,

	width=64,

	exclude_min=False,

	exclude_max=False,

)

	Returns a strategy which generates floats.

	If min_value is not None, all values will be >= min_value
(or > min_value if exclude_min).

	If max_value is not None, all values will be <= max_value
(or < max_value if exclude_max).

	If min_value or max_value is not None, it is an error to enable
allow_nan.

	If both min_value and max_value are not None, it is an error to enable
allow_infinity.

	If inferred values range does not include subnormal values, it is an error
to enable allow_subnormal.

Where not explicitly ruled out by the bounds,
subnormals [https://en.wikipedia.org/wiki/Subnormal_number], infinities, and NaNs are possible
values generated by this strategy.

The width argument specifies the maximum number of bits of precision
required to represent the generated float. Valid values are 16, 32, or 64.
Passing width=32 will still use the builtin 64-bit float [https://docs.python.org/3/library/functions.html#float] class,
but always for values which can be exactly represented as a 32-bit float.

The exclude_min and exclude_max argument can be used to generate numbers
from open or half-open intervals, by excluding the respective endpoints.
Excluding either signed zero will also exclude the other.
Attempting to exclude an endpoint which is None will raise an error;
use allow_infinity=False to generate finite floats. You can however
use e.g. min_value=-math.inf, exclude_min=True to exclude only
one infinite endpoint.

Examples from this strategy have a complicated and hard to explain
shrinking behaviour, but it tries to improve “human readability”. Finite
numbers will be preferred to infinity and infinity will be preferred to
NaN.

	
hypothesis.strategies.fractions(

	min_value=None,

	max_value=None,

	*,

	max_denominator=None,

)

	Returns a strategy which generates Fractions.

If min_value is not None then all generated values are no less than
min_value. If max_value is not None then all generated values are no
greater than max_value. min_value and max_value may be anything accepted
by the Fraction [https://docs.python.org/3/library/fractions.html#fractions.Fraction] constructor.

If max_denominator is not None then the denominator of any generated
values is no greater than max_denominator. Note that max_denominator must
be None or a positive integer.

Examples from this strategy shrink towards smaller denominators, then
closer to zero.

	
hypothesis.strategies.from_regex(regex, *, fullmatch=False, alphabet=None)

	Generates strings that contain a match for the given regex (i.e. ones
for which re.search() [https://docs.python.org/3/library/re.html#re.search] will return a non-None result).

regex may be a pattern or compiled regex [https://docs.python.org/3/library/re.html#re.compile].
Both byte-strings and unicode strings are supported, and will generate
examples of the same type.

You can use regex flags such as re.IGNORECASE [https://docs.python.org/3/library/re.html#re.IGNORECASE] or
re.DOTALL [https://docs.python.org/3/library/re.html#re.DOTALL] to control generation. Flags can be passed either
in compiled regex or inside the pattern with a (?iLmsux) group.

Some regular expressions are only partly supported - the underlying
strategy checks local matching and relies on filtering to resolve
context-dependent expressions. Using too many of these constructs may
cause health-check errors as too many examples are filtered out. This
mainly includes (positive or negative) lookahead and lookbehind groups.

If you want the generated string to match the whole regex you should use
boundary markers. So e.g. r"\A.\Z" will return a single character
string, while "." will return any string, and r"\A.$" will return
a single character optionally followed by a "\n".
Alternatively, passing fullmatch=True will ensure that the whole
string is a match, as if you had used the \A and \Z markers.

The alphabet= argument constrains the characters in the generated
string, as for text(), and is only supported for unicode strings.

Examples from this strategy shrink towards shorter strings and lower
character values, with exact behaviour that may depend on the pattern.

	
hypothesis.strategies.from_type(thing)

	Looks up the appropriate search strategy for the given type.

from_type is used internally to fill in missing arguments to
builds() and can be used interactively
to explore what strategies are available or to debug type resolution.

You can use register_type_strategy() to
handle your custom types, or to globally redefine certain strategies -
for example excluding NaN from floats, or use timezone-aware instead of
naive time and datetime strategies.

The resolution logic may be changed in a future version, but currently
tries these five options:

	If thing is in the default lookup mapping or user-registered lookup,
return the corresponding strategy. The default lookup covers all types
with Hypothesis strategies, including extras where possible.

	If thing is from the typing [https://docs.python.org/3/library/typing.html#module-typing] module, return the
corresponding strategy (special logic).

	If thing has one or more subtypes in the merged lookup, return
the union of the strategies for those types that are not subtypes of
other elements in the lookup.

	Finally, if thing has type annotations for all required arguments,
and is not an abstract class, it is resolved via
builds().

	Because abstract types [https://docs.python.org/3/library/abc.html#module-abc] cannot be instantiated,
we treat abstract types as the union of their concrete subclasses.
Note that this lookup works via inheritance but not via
register [https://docs.python.org/3/library/abc.html#abc.ABCMeta.register], so you may still need to use
register_type_strategy().

There is a valuable recipe for leveraging from_type() to generate
“everything except” values from a specified type. I.e.

def everything_except(excluded_types):
 return (
 from_type(type)
 .flatmap(from_type)
 .filter(lambda x: not isinstance(x, excluded_types))
)

For example, everything_except(int) returns a strategy that can
generate anything that from_type() can ever generate, except for
instances of int [https://docs.python.org/3/library/functions.html#int], and excluding instances of types
added via register_type_strategy().

This is useful when writing tests which check that invalid input is
rejected in a certain way.

	
hypothesis.strategies.frozensets(elements, *, min_size=0, max_size=None)

	This is identical to the sets function but instead returns
frozensets.

	
hypothesis.strategies.functions(*, like=lambda : ..., returns=..., pure=False)

	A strategy for functions, which can be used in callbacks.

The generated functions will mimic the interface of like, which must
be a callable (including a class, method, or function). The return value
for the function is drawn from the returns argument, which must be a
strategy. If returns is not passed, we attempt to infer a strategy
from the return-type annotation if present, falling back to none().

If pure=True, all arguments passed to the generated function must be
hashable, and if passed identical arguments the original return value will
be returned again - not regenerated, so beware mutable values.

If pure=False, generated functions do not validate their arguments, and
may return a different value if called again with the same arguments.

Generated functions can only be called within the scope of the @given
which created them. This strategy does not support .example().

	
hypothesis.strategies.integers(min_value=None, max_value=None)

	Returns a strategy which generates integers.

If min_value is not None then all values will be >= min_value. If
max_value is not None then all values will be <= max_value

Examples from this strategy will shrink towards zero, and negative values
will also shrink towards positive (i.e. -n may be replaced by +n).

	
hypothesis.strategies.ip_addresses(*, v=None, network=None)

	Generate IP addresses - v=4 for IPv4Address [https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv4Address]es,
v=6 for IPv6Address [https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv6Address]es, or leave unspecified
to allow both versions.

network may be an IPv4Network [https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv4Network] or
IPv6Network [https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv6Network], or a string representing a network such as
"127.0.0.0/24" or "2001:db8::/32". As well as generating addresses within
a particular routable network, this can be used to generate addresses from a
reserved range listed in the
IANA [https://www.iana.org/assignments/iana-ipv4-special-registry/]
registries [https://www.iana.org/assignments/iana-ipv6-special-registry/].

If you pass both v and network, they must be for the same version.

	
hypothesis.strategies.iterables(

	elements,

	*,

	min_size=0,

	max_size=None,

	unique_by=None,

	unique=False,

)

	This has the same behaviour as lists, but returns iterables instead.

Some iterables cannot be indexed (e.g. sets) and some do not have a
fixed length (e.g. generators). This strategy produces iterators,
which cannot be indexed and do not have a fixed length. This ensures
that you do not accidentally depend on sequence behaviour.

	
hypothesis.strategies.just(value)

	Return a strategy which only generates value.

Note: value is not copied. Be wary of using mutable values.

If value is the result of a callable, you can use
builds(callable) instead
of just(callable()) to get a fresh value each time.

Examples from this strategy do not shrink (because there is only one).

	
hypothesis.strategies.lists(

	elements,

	*,

	min_size=0,

	max_size=None,

	unique_by=None,

	unique=False,

)

	Returns a list containing values drawn from elements with length in the
interval [min_size, max_size] (no bounds in that direction if these are
None). If max_size is 0, only the empty list will be drawn.

If unique is True (or something that evaluates to True), we compare direct
object equality, as if unique_by was lambda x: x. This comparison only
works for hashable types.

If unique_by is not None it must be a callable or tuple of callables
returning a hashable type when given a value drawn from elements. The
resulting list will satisfy the condition that for i != j,
unique_by(result[i]) != unique_by(result[j]).

If unique_by is a tuple of callables the uniqueness will be respective
to each callable.

For example, the following will produce two columns of integers with both
columns being unique respectively.

>>> twoints = st.tuples(st.integers(), st.integers())
>>> st.lists(twoints, unique_by=(lambda x: x[0], lambda x: x[1]))

Examples from this strategy shrink by trying to remove elements from the
list, and by shrinking each individual element of the list.

	
hypothesis.strategies.none()

	Return a strategy which only generates None.

Examples from this strategy do not shrink (because there is only
one).

	
hypothesis.strategies.nothing()

	This strategy never successfully draws a value and will always reject on
an attempt to draw.

Examples from this strategy do not shrink (because there are none).

	
hypothesis.strategies.one_of(*args)

	Return a strategy which generates values from any of the argument
strategies.

This may be called with one iterable argument instead of multiple
strategy arguments, in which case one_of(x) and one_of(*x) are
equivalent.

Examples from this strategy will generally shrink to ones that come from
strategies earlier in the list, then shrink according to behaviour of the
strategy that produced them. In order to get good shrinking behaviour,
try to put simpler strategies first. e.g. one_of(none(), text()) is
better than one_of(text(), none()).

This is especially important when using recursive strategies. e.g.
x = st.deferred(lambda: st.none() | st.tuples(x, x)) will shrink well,
but x = st.deferred(lambda: st.tuples(x, x) | st.none()) will shrink
very badly indeed.

	
hypothesis.strategies.permutations(values)

	Return a strategy which returns permutations of the ordered collection
values.

Examples from this strategy shrink by trying to become closer to the
original order of values.

	
hypothesis.strategies.random_module()

	Hypothesis always seeds global PRNGs before running a test, and restores the
previous state afterwards.

If having a fixed seed would unacceptably weaken your tests, and you
cannot use a random.Random instance provided by
randoms(), this strategy calls
random.seed() [https://docs.python.org/3/library/random.html#random.seed] with an arbitrary integer and passes you
an opaque object whose repr displays the seed value for debugging.
If numpy.random is available, that state is also managed, as is anything
managed by hypothesis.register_random().

Examples from these strategy shrink to seeds closer to zero.

	
hypothesis.strategies.randoms(*, note_method_calls=False, use_true_random=False)

	Generates instances of random.Random. The generated Random instances
are of a special HypothesisRandom subclass.

	If note_method_calls is set to True, Hypothesis will print the
randomly drawn values in any falsifying test case. This can be helpful
for debugging the behaviour of randomized algorithms.

	If use_true_random is set to True then values will be drawn from
their usual distribution, otherwise they will actually be Hypothesis
generated values (and will be shrunk accordingly for any failing test
case). Setting use_true_random=False will tend to expose bugs that
would occur with very low probability when it is set to True, and this
flag should only be set to True when your code relies on the distribution
of values for correctness.

For managing global state, see the random_module()
strategy and register_random() function.

	
hypothesis.strategies.recursive(base, extend, *, max_leaves=100)

	base: A strategy to start from.

extend: A function which takes a strategy and returns a new strategy.

max_leaves: The maximum number of elements to be drawn from base on a given
run.

This returns a strategy S such that S = extend(base | S). That is,
values may be drawn from base, or from any strategy reachable by mixing
applications of | and extend.

An example may clarify: recursive(booleans(), lists) would return a
strategy that may return arbitrarily nested and mixed lists of booleans.
So e.g. False, [True], [False, []], and [[[[True]]]] are
all valid values to be drawn from that strategy.

Examples from this strategy shrink by trying to reduce the amount of
recursion and by shrinking according to the shrinking behaviour of base
and the result of extend.

	
hypothesis.strategies.register_type_strategy(custom_type, strategy)

	Add an entry to the global type-to-strategy lookup.

This lookup is used in builds() and
@given.

builds() will be used automatically for
classes with type annotations on __init__ , so you only need to
register a strategy if one or more arguments need to be more tightly
defined than their type-based default, or if you want to supply a strategy
for an argument with a default value.

strategy may be a search strategy, or a function that takes a type and
returns a strategy (useful for generic types). The function may return
NotImplemented [https://docs.python.org/3/library/constants.html#NotImplemented] to conditionally not provide a strategy for the type
(the type will still be resolved by other methods, if possible, as if the
function was not registered).

Note that you may not register a parametrised generic type (such as
MyCollection[int]) directly, because the resolution logic does not
handle this case correctly. Instead, you may register a function for
MyCollection and inspect the type parameters within that function [https://stackoverflow.com/q/48572831].

	
hypothesis.strategies.runner(*, default=not_set)

	A strategy for getting “the current test runner”, whatever that may be.
The exact meaning depends on the entry point, but it will usually be the
associated ‘self’ value for it.

If you are using this in a rule for stateful testing, this strategy
will return the instance of the RuleBasedStateMachine
that the rule is running for.

If there is no current test runner and a default is provided, return
that default. If no default is provided, raises InvalidArgument.

Examples from this strategy do not shrink (because there is only one).

	
hypothesis.strategies.sampled_from(elements)

	Returns a strategy which generates any value present in elements.

Note that as with just(), values will not be
copied and thus you should be careful of using mutable data.

sampled_from supports ordered collections, as well as
Enum [https://docs.python.org/3/library/enum.html#enum.Enum] objects. Flag [https://docs.python.org/3/library/enum.html#enum.Flag] objects
may also generate any combination of their members.

Examples from this strategy shrink by replacing them with values earlier in
the list. So e.g. sampled_from([10, 1]) will shrink by trying to replace
1 values with 10, and sampled_from([1, 10]) will shrink by trying to
replace 10 values with 1.

It is an error to sample from an empty sequence, because returning nothing()
makes it too easy to silently drop parts of compound strategies. If you need
that behaviour, use sampled_from(seq) if seq else nothing().

	
hypothesis.strategies.sets(elements, *, min_size=0, max_size=None)

	This has the same behaviour as lists, but returns sets instead.

Note that Hypothesis cannot tell if values are drawn from elements
are hashable until running the test, so you can define a strategy
for sets of an unhashable type but it will fail at test time.

Examples from this strategy shrink by trying to remove elements from the
set, and by shrinking each individual element of the set.

	
hypothesis.strategies.shared(base, *, key=None)

	Returns a strategy that draws a single shared value per run, drawn from
base. Any two shared instances with the same key will share the same value,
otherwise the identity of this strategy will be used. That is:

>>> s = integers() # or any other strategy
>>> x = shared(s)
>>> y = shared(s)

In the above x and y may draw different (or potentially the same) values.
In the following they will always draw the same:

>>> x = shared(s, key="hi")
>>> y = shared(s, key="hi")

Examples from this strategy shrink as per their base strategy.

	
hypothesis.strategies.slices(size)

	Generates slices that will select indices up to the supplied size

Generated slices will have start and stop indices that range from -size to size - 1
and will step in the appropriate direction. Slices should only produce an empty selection
if the start and end are the same.

Examples from this strategy shrink toward 0 and smaller values

	
hypothesis.strategies.text(

	alphabet=characters(codec='utf-8'),

	*,

	min_size=0,

	max_size=None,

)

	Generates strings with characters drawn from alphabet, which should
be a collection of length one strings or a strategy generating such strings.

The default alphabet strategy can generate the full unicode range but
excludes surrogate characters because they are invalid in the UTF-8
encoding. You can use characters() without
arguments to find surrogate-related bugs such as bpo-34454 [https://bugs.python.org/issue34454].

min_size and max_size have the usual interpretations.
Note that Python measures string length by counting codepoints: U+00C5
Å is a single character, while U+0041 U+030A Å is two - the A,
and a combining ring above.

Examples from this strategy shrink towards shorter strings, and with the
characters in the text shrinking as per the alphabet strategy.
This strategy does not normalize() [https://docs.python.org/3/library/unicodedata.html#unicodedata.normalize] examples,
so generated strings may be in any or none of the ‘normal forms’.

	
hypothesis.strategies.timedeltas(

	min_value=datetime.timedelta.min,

	max_value=datetime.timedelta.max,

)

	A strategy for timedeltas between min_value and max_value.

Examples from this strategy shrink towards zero.

	
hypothesis.strategies.times(

	min_value=datetime.time.min,

	max_value=datetime.time.max,

	*,

	timezones=none(),

)

	A strategy for times between min_value and max_value.

The timezones argument is handled as for datetimes().

Examples from this strategy shrink towards midnight, with the timezone
component shrinking as for the strategy that provided it.

	
hypothesis.strategies.timezone_keys(*, allow_prefix=True)

	A strategy for IANA timezone names [https://en.wikipedia.org/wiki/List_of_tz_database_time_zones].

As well as timezone names like "UTC", "Australia/Sydney", or
"America/New_York", this strategy can generate:

	Aliases such as "Antarctica/McMurdo", which links to "Pacific/Auckland".

	Deprecated names such as "Antarctica/South_Pole", which also links to
"Pacific/Auckland". Note that most but
not all deprecated timezone names are also aliases.

	Timezone names with the "posix/" or "right/" prefixes, unless
allow_prefix=False.

These strings are provided separately from Tzinfo objects - such as ZoneInfo
instances from the timezones() strategy - to facilitate testing of timezone
logic without needing workarounds to access non-canonical names.

Note

The zoneinfo [https://docs.python.org/3/library/zoneinfo.html#module-zoneinfo] module is new in Python 3.9, so you will need
to install the backports.zoneinfo [https://pypi.org/project/backports.zoneinfo/] module on earlier versions.

On Windows, you will also need to install the tzdata package [https://docs.python.org/3/library/zoneinfo.html#data-sources].

pip install hypothesis[zoneinfo] will install these conditional
dependencies if and only if they are needed.

On Windows, you may need to access IANA timezone data via the tzdata [https://pypi.org/project/tzdata/]
package. For non-IANA timezones, such as Windows-native names or GNU TZ
strings, we recommend using sampled_from() with
the dateutil [https://pypi.org/project/python-dateutil/] package, e.g.
dateutil.tz.tzwin.list() [https://dateutil.readthedocs.io/en/stable/tz.html#dateutil.tz.tzwin.list].

	
hypothesis.strategies.timezones(*, no_cache=False)

	A strategy for zoneinfo.ZoneInfo [https://docs.python.org/3/library/zoneinfo.html#zoneinfo.ZoneInfo] objects.

If no_cache=True, the generated instances are constructed using
ZoneInfo.no_cache [https://docs.python.org/3/library/zoneinfo.html#zoneinfo.ZoneInfo.no_cache] instead
of the usual constructor. This may change the semantics of your datetimes
in surprising ways, so only use it if you know that you need to!

Note

The zoneinfo [https://docs.python.org/3/library/zoneinfo.html#module-zoneinfo] module is new in Python 3.9, so you will need
to install the backports.zoneinfo [https://pypi.org/project/backports.zoneinfo/] module on earlier versions.

On Windows, you will also need to install the tzdata package [https://docs.python.org/3/library/zoneinfo.html#data-sources].

pip install hypothesis[zoneinfo] will install these conditional
dependencies if and only if they are needed.

	
hypothesis.strategies.tuples(*args)

	Return a strategy which generates a tuple of the same length as args by
generating the value at index i from args[i].

e.g. tuples(integers(), integers()) would generate a tuple of length
two with both values an integer.

Examples from this strategy shrink by shrinking their component parts.

	
hypothesis.strategies.uuids(*, version=None, allow_nil=False)

	Returns a strategy that generates UUIDs [https://docs.python.org/3/library/uuid.html#uuid.UUID].

If the optional version argument is given, value is passed through
to UUID [https://docs.python.org/3/library/uuid.html#uuid.UUID] and only UUIDs of that version will
be generated.

If allow_nil is True, generate the nil UUID much more often.
Otherwise, all returned values from this will be unique, so e.g. if you do
lists(uuids()) the resulting list will never contain duplicates.

Examples from this strategy don’t have any meaningful shrink order.

Provisional strategies

This module contains various provisional APIs and strategies.

It is intended for internal use, to ease code reuse, and is not stable.
Point releases may move or break the contents at any time!

Internet strategies should conform to RFC 3986 [https://datatracker.ietf.org/doc/html/rfc3986.html] or the authoritative
definitions it links to. If not, report the bug!

	
hypothesis.provisional.domains(*, max_length=255, max_element_length=63)

	Generate RFC 1035 [https://datatracker.ietf.org/doc/html/rfc1035.html] compliant fully qualified domain names.

	
hypothesis.provisional.urls()

	A strategy for RFC 3986 [https://datatracker.ietf.org/doc/html/rfc3986.html], generating http/https URLs.

Shrinking

When using strategies it is worth thinking about how the data shrinks.
Shrinking is the process by which Hypothesis tries to produce human readable
examples when it finds a failure - it takes a complex example and turns it
into a simpler one.

Each strategy defines an order in which it shrinks - you won’t usually need to
care about this much, but it can be worth being aware of as it can affect what
the best way to write your own strategies is.

The exact shrinking behaviour is not a guaranteed part of the API, but it
doesn’t change that often and when it does it’s usually because we think the
new way produces nicer examples.

Possibly the most important one to be aware of is
one_of(), which has a preference for values
produced by strategies earlier in its argument list. Most of the others should
largely “do the right thing” without you having to think about it.

Adapting strategies

Often it is the case that a strategy doesn’t produce exactly what you want it
to and you need to adapt it. Sometimes you can do this in the test, but this
hurts reuse because you then have to repeat the adaption in every test.

Hypothesis gives you ways to build strategies from other strategies given
functions for transforming the data.

Mapping

map is probably the easiest and most useful of these to use. If you have a
strategy s and a function f, then an example s.map(f).example() is
f(s.example()), i.e. we draw an example from s and then apply f to it.

e.g.:

>>> lists(integers()).map(sorted).example()
[-25527, -24245, -23118, -93, -70, -7, 0, 39, 40, 65, 88, 112, 6189, 9480, 19469, 27256, 32526, 1566924430]

Note that many things that you might use mapping for can also be done with
builds(), and if you find yourself indexing
into a tuple within .map() it’s probably time to use that instead.

Filtering

filter lets you reject some examples. s.filter(f).example() is some
example of s such that f(example) is truthy.

>>> integers().filter(lambda x: x > 11).example()
26126
>>> integers().filter(lambda x: x > 11).example()
23324

It’s important to note that filter isn’t magic and if your condition is too
hard to satisfy then this can fail:

>>> integers().filter(lambda x: False).example()
Traceback (most recent call last):
 ...
hypothesis.errors.Unsatisfiable: Could not find any valid examples in 20 tries

In general you should try to use filter only to avoid corner cases that you
don’t want rather than attempting to cut out a large chunk of the search space.

A technique that often works well here is to use map to first transform the data
and then use filter to remove things that didn’t work out. So for example if
you wanted pairs of integers (x,y) such that x < y you could do the following:

>>> tuples(integers(), integers()).map(sorted).filter(lambda x: x[0] < x[1]).example()
[-8543729478746591815, 3760495307320535691]

Chaining strategies together

Finally there is flatmap. flatmap draws an example, then turns that
example into a strategy, then draws an example from that strategy.

It may not be obvious why you want this at first, but it turns out to be
quite useful because it lets you generate different types of data with
relationships to each other.

For example suppose we wanted to generate a list of lists of the same
length:

>>> rectangle_lists = integers(min_value=0, max_value=10).flatmap(
... lambda n: lists(lists(integers(), min_size=n, max_size=n))
...)
>>> rectangle_lists.example()
[]
>>> rectangle_lists.filter(lambda x: len(x) >= 10).example()
[[], [], [], [], [], [], [], [], [], []]
>>> rectangle_lists.filter(lambda t: len(t) >= 3 and len(t[0]) >= 3).example()
[[0, 0, 0], [0, 0, 0], [0, 0, 0]]
>>> rectangle_lists.filter(lambda t: sum(len(s) for s in t) >= 10).example()
[[0], [0], [0], [0], [0], [0], [0], [0], [0], [0]]

In this example we first choose a length for our tuples, then we build a
strategy which generates lists containing lists precisely of that length. The
finds show what simple examples for this look like.

Most of the time you probably don’t want flatmap, but unlike filter and
map which are just conveniences for things you could just do in your tests,
flatmap allows genuinely new data generation that you wouldn’t otherwise be
able to easily do.

(If you know Haskell: Yes, this is more or less a monadic bind. If you don’t
know Haskell, ignore everything in these parentheses. You do not need to
understand anything about monads to use this, or anything else in Hypothesis).

Recursive data

Sometimes the data you want to generate has a recursive definition. e.g. if you
wanted to generate JSON data, valid JSON is:

	Any float, any boolean, any unicode string.

	Any list of valid JSON data

	Any dictionary mapping unicode strings to valid JSON data.

The problem is that you cannot call a strategy recursively and expect it to not just
blow up and eat all your memory. The other problem here is that not all unicode strings
display consistently on different machines, so we’ll restrict them in our doctest.

The way Hypothesis handles this is with the recursive()
strategy which you pass in a base case and a function that, given a strategy
for your data type, returns a new strategy for it. So for example:

>>> from string import printable
... from pprint import pprint
>>> json = recursive(
... none() | booleans() | floats() | text(printable),
... lambda children: lists(children) | dictionaries(text(printable), children),
...)
>>> pprint(json.example())
[[1.175494351e-38, ']', 1.9, True, False, '.M}Xl', ''], True]
>>> pprint(json.example())
{'de(l': None,
 'nK': {'(Rt)': None,
 '+hoZh1YU]gy8': True,
 '8z]EIFA06^li^': 'LFE{Q',
 '9,': 'l{cA=/'}}

That is, we start with our leaf data and then we augment it by allowing lists and dictionaries of anything we can generate as JSON data.

The size control of this works by limiting the maximum number of values that can be drawn from the base strategy. So for example if
we wanted to only generate really small JSON we could do this as:

>>> small_lists = recursive(booleans(), lists, max_leaves=5)
>>> small_lists.example()
True
>>> small_lists.example()
[False]

Composite strategies

The @composite decorator lets
you combine other strategies in more or less
arbitrary ways. It’s probably the main thing you’ll want to use for
complicated custom strategies.

The composite decorator works by converting a function that returns one
example into a function that returns a strategy that produces such
examples - which you can pass to @given, modify
with .map or .filter, and generally use like any other strategy.

It does this by giving you a special function draw as the first
argument, which can be used just like the corresponding method of the
data() strategy within a test. In fact,
the implementation is almost the same - but defining a strategy with
@composite makes code reuse
easier, and usually improves the display of failing examples.

For example, the following gives you a list and an index into it:

>>> @composite
... def list_and_index(draw, elements=integers()):
... xs = draw(lists(elements, min_size=1))
... i = draw(integers(min_value=0, max_value=len(xs) - 1))
... return (xs, i)
...

draw(s) is a function that should be thought of as returning s.example(),
except that the result is reproducible and will minimize correctly. The
decorated function has the initial argument removed from the list, but will
accept all the others in the expected order. Defaults are preserved.

>>> list_and_index()
list_and_index()
>>> list_and_index().example()
([15949, -35, 21764, 8167, 1607867656, -41, 104, 19, -90, 520116744169390387, 7107438879249457973], 0)

>>> list_and_index(booleans())
list_and_index(elements=booleans())
>>> list_and_index(booleans()).example()
([True, False], 0)

Note that the repr will work exactly like it does for all the built-in
strategies: it will be a function that you can call to get the strategy in
question, with values provided only if they do not match the defaults.

You can use assume inside composite functions:

@composite
def distinct_strings_with_common_characters(draw):
 x = draw(text(min_size=1))
 y = draw(text(alphabet=x))
 assume(x != y)
 return (x, y)

This works as assume normally would, filtering out any examples for which the
passed in argument is falsey.

Take care that your function can cope with adversarial draws, or explicitly rejects
them using the .filter() method or assume() - our mutation
and shrinking logic can do some strange things, and a naive implementation might
lead to serious performance problems. For example:

@composite
def reimplementing_sets_strategy(draw, elements=st.integers(), size=5):
 # The bad way: if Hypothesis keeps generating e.g. zero,
 # we'll keep looping for a very long time.
 result = set()
 while len(result) < size:
 result.add(draw(elements))
 # The good way: use a filter, so Hypothesis can tell what's valid!
 for _ in range(size):
 result.add(draw(elements.filter(lambda x: x not in result)))
 return result

If @composite is used to decorate a
method or classmethod, the draw argument must come before self or cls.
While we therefore recommend writing strategies as standalone functions and using
the register_type_strategy() function to associate
them with a class, methods are supported and the @composite decorator may be
applied either before or after @classmethod or @staticmethod.
See issue #2578 [https://github.com/HypothesisWorks/hypothesis/issues/2578] and pull request #2634 [https://github.com/HypothesisWorks/hypothesis/pull/2634] for more details.

Drawing interactively in tests

There is also the data() strategy, which gives you a means of using
strategies interactively. Rather than having to specify everything up front in
@given you can draw from strategies in the body of your test.

This is similar to @composite, but
even more powerful as it allows you to mix test code with example generation.
The downside of this power is that data() is
incompatible with explicit @example(...)s -
and the mixed code is often harder to debug when something goes wrong.

If you need values that are affected by previous draws but which don’t depend
on the execution of your test, stick to the simpler
@composite.

@given(data())
def test_draw_sequentially(data):
 x = data.draw(integers())
 y = data.draw(integers(min_value=x))
 assert x < y

If the test fails, each draw will be printed with the falsifying example. e.g.
the above is wrong (it has a boundary condition error), so will print:

Falsifying example: test_draw_sequentially(data=data(...))
Draw 1: 0
Draw 2: 0

As you can see, data drawn this way is simplified as usual.

Optionally, you can provide a label to identify values generated by each call
to data.draw(). These labels can be used to identify values in the output
of a falsifying example.

For instance:

@given(data())
def test_draw_sequentially(data):
 x = data.draw(integers(), label="First number")
 y = data.draw(integers(min_value=x), label="Second number")
 assert x < y

will produce the output:

Falsifying example: test_draw_sequentially(data=data(...))
Draw 1 (First number): 0
Draw 2 (Second number): 0

First-party extensions

Hypothesis has minimal dependencies, to maximise
compatibility and make installing Hypothesis as easy as possible.

Our integrations with specific packages are therefore provided by extra
modules that need their individual dependencies installed in order to work.
You can install these dependencies using the setuptools extra feature as e.g.
pip install hypothesis[django]. This will check installation of compatible versions.

You can also just install hypothesis into a project using them, ignore the version
constraints, and hope for the best.

In general “Which version is Hypothesis compatible with?” is a hard question to answer
and even harder to regularly test. Hypothesis is always tested against the latest
compatible version and each package will note the expected compatibility range. If
you run into a bug with any of these please specify the dependency version.

There are separate pages for Hypothesis for Django users and Hypothesis for the scientific stack.

hypothesis[cli]

$ hypothesis --help
Usage: hypothesis [OPTIONS] COMMAND [ARGS]...

Options:
 --version Show the version and exit.
 -h, --help Show this message and exit.

Commands:
 codemod `hypothesis codemod` refactors deprecated or inefficient code.
 fuzz [hypofuzz] runs tests with an adaptive coverage-guided fuzzer.
 write `hypothesis write` writes property-based tests for you!

This module requires the click [https://pypi.org/project/click/] package, and provides Hypothesis’ command-line
interface, for e.g. ‘ghostwriting’ tests via the terminal.
It’s also where HypoFuzz [https://hypofuzz.com/] adds the hypothesis fuzz
command (learn more about that here [https://hypofuzz.com/docs/quickstart.html]).

hypothesis[codemods]

This module provides codemods based on the LibCST [https://pypi.org/project/LibCST/] library, which can
both detect and automatically fix issues with code that uses Hypothesis,
including upgrading from deprecated features to our recommended style.

You can run the codemods via our CLI:

$ hypothesis codemod --help
Usage: hypothesis codemod [OPTIONS] PATH...

 `hypothesis codemod` refactors deprecated or inefficient code.

 It adapts `python -m libcst.tool`, removing many features and config
 options which are rarely relevant for this purpose. If you need more
 control, we encourage you to use the libcst CLI directly; if not this one
 is easier.

 PATH is the file(s) or directories of files to format in place, or "-" to
 read from stdin and write to stdout.

Options:
 -h, --help Show this message and exit.

Alternatively you can use python -m libcst.tool, which offers more control
at the cost of additional configuration (adding 'hypothesis.extra' to the
modules list in .libcst.codemod.yaml) and some issues on Windows [https://github.com/Instagram/LibCST/issues/435].

	
hypothesis.extra.codemods.refactor(code)

	Update a source code string from deprecated to modern Hypothesis APIs.

This may not fix all the deprecation warnings in your code, but we’re
confident that it will be easier than doing it all by hand.

We recommend using the CLI, but if you want a Python function here it is.

hypothesis[dpcontracts]

This module provides tools for working with the dpcontracts [https://pypi.org/project/dpcontracts/] library,
because combining contracts and property-based testing works really well [https://hillelwayne.com/talks/beyond-unit-tests/].

It requires dpcontracts >= 0.4.

	
hypothesis.extra.dpcontracts.fulfill(contract_func)

	Decorate contract_func to reject calls which violate preconditions,
and retry them with different arguments.

This is a convenience function for testing internal code that uses
dpcontracts [https://pypi.org/project/dpcontracts/], to automatically filter out arguments that would be
rejected by the public interface before triggering a contract error.

This can be used as builds(fulfill(func), ...) or in the body of the
test e.g. assert fulfill(func)(*args).

Tip

For new projects, we recommend using either deal [https://pypi.org/project/deal/] or icontract [https://pypi.org/project/icontract/]
and icontract-hypothesis [https://pypi.org/project/icontract-hypothesis/] over dpcontracts [https://pypi.org/project/dpcontracts/].
They’re generally more powerful tools for design-by-contract programming,
and have substantially nicer Hypothesis integration too!

hypothesis[lark]

This extra can be used to generate strings matching any context-free grammar,
using the Lark parser library [https://github.com/lark-parser/lark].

It currently only supports Lark’s native EBNF syntax, but we plan to extend
this to support other common syntaxes such as ANTLR and RFC 5234 [https://datatracker.ietf.org/doc/html/rfc5234.html] ABNF.
Lark already supports loading grammars [https://lark-parser.readthedocs.io/en/latest/nearley.html]
from nearley.js [https://nearley.js.org/], so you may not have to write
your own at all.

	
hypothesis.extra.lark.from_lark(

	grammar,

	*,

	start=None,

	explicit=None,

	alphabet=characters(codec='utf-8'),

)

	A strategy for strings accepted by the given context-free grammar.

grammar must be a Lark object, which wraps an EBNF specification.
The Lark EBNF grammar reference can be found
here [https://lark-parser.readthedocs.io/en/latest/grammar.html].

from_lark will automatically generate strings matching the
nonterminal start symbol in the grammar, which was supplied as an
argument to the Lark class. To generate strings matching a different
symbol, including terminals, you can override this by passing the
start argument to from_lark. Note that Lark may remove unreachable
productions when the grammar is compiled, so you should probably pass the
same value for start to both.

Currently from_lark does not support grammars that need custom lexing.
Any lexers will be ignored, and any undefined terminals from the use of
%declare will result in generation errors. To define strategies for
such terminals, pass a dictionary mapping their name to a corresponding
strategy as the explicit argument.

The hypothesmith [https://pypi.org/project/hypothesmith/] project includes a strategy for Python source,
based on a grammar and careful post-processing.

Example grammars, which may provide a useful starting point for your tests, can be found
in the Lark repository [https://github.com/lark-parser/lark/tree/master/examples]
and in this third-party collection [https://github.com/ligurio/lark-grammars].

hypothesis[pytz]

This module provides pytz [https://pypi.org/project/pytz/] timezones.

You can use this strategy to make
hypothesis.strategies.datetimes() and
hypothesis.strategies.times() produce timezone-aware values.

	
hypothesis.extra.pytz.timezones()

	Any timezone in the Olsen database, as a pytz tzinfo object.

This strategy minimises to UTC, or the smallest possible fixed
offset, and is designed for use with
hypothesis.strategies.datetimes().

hypothesis[dateutil]

This module provides dateutil [https://pypi.org/project/python-dateutil/] timezones.

You can use this strategy to make datetimes()
and times() produce timezone-aware values.

	
hypothesis.extra.dateutil.timezones()

	Any timezone from dateutil [https://pypi.org/project/python-dateutil/].

This strategy minimises to UTC, or the timezone with the smallest offset
from UTC as of 2000-01-01, and is designed for use with
datetimes().

Note that the timezones generated by the strategy may vary depending on the
configuration of your machine. See the dateutil documentation for more
information.

Ghostwriting tests for you

Writing tests with Hypothesis frees you from the tedium of deciding on and
writing out specific inputs to test. Now, the hypothesis.extra.ghostwriter
module can write your test functions for you too!

The idea is to provide an easy way to start property-based testing,
and a seamless transition to more complex test code - because ghostwritten
tests are source code that you could have written for yourself.

So just pick a function you’d like tested, and feed it to one of the functions
below. They follow imports, use but do not require type annotations, and
generally do their best to write you a useful test. You can also use
our command-line interface:

$ hypothesis write --help
Usage: hypothesis write [OPTIONS] FUNC...

 `hypothesis write` writes property-based tests for you!

 Type annotations are helpful but not required for our advanced
 introspection and templating logic. Try running the examples below to see
 how it works:

 hypothesis write gzip
 hypothesis write numpy.matmul
 hypothesis write pandas.from_dummies
 hypothesis write re.compile --except re.error
 hypothesis write --equivalent ast.literal_eval eval
 hypothesis write --roundtrip json.dumps json.loads
 hypothesis write --style=unittest --idempotent sorted
 hypothesis write --binary-op operator.add

Options:
 --roundtrip start by testing write/read or encode/decode!
 --equivalent very useful when optimising or refactoring code
 --errors-equivalent --equivalent, but also allows consistent errors
 --idempotent check that f(x) == f(f(x))
 --binary-op associativity, commutativity, identity element
 --style [pytest|unittest] pytest-style function, or unittest-style method?
 -e, --except OBJ_NAME dotted name of exception(s) to ignore
 --annotate / --no-annotate force ghostwritten tests to be type-annotated
 (or not). By default, match the code to test.
 -h, --help Show this message and exit.

Tip

Using a light theme? Hypothesis respects NO_COLOR [https://no-color.org/]
and DJANGO_COLORS=light.

Note

The ghostwriter requires black [https://pypi.org/project/black/], but the generated code only
requires Hypothesis itself.

Note

Legal questions? While the ghostwriter fragments and logic is under the
MPL-2.0 license like the rest of Hypothesis, the output from the ghostwriter
is made available under the Creative Commons Zero (CC0) [https://creativecommons.org/share-your-work/public-domain/cc0/]
public domain dedication, so you can use it without any restrictions.

	
hypothesis.extra.ghostwriter.magic(

	*modules_or_functions,

	except_=(),

	style='pytest',

	annotate=None,

)

	Guess which ghostwriters to use, for a module or collection of functions.

As for all ghostwriters, the except_ argument should be an
Exception [https://docs.python.org/3/library/exceptions.html#Exception] or tuple of exceptions, and style may be either
"pytest" to write test functions or "unittest" to write test methods
and TestCase [https://docs.python.org/3/library/unittest.html#unittest.TestCase].

After finding the public functions attached to any modules, the magic
ghostwriter looks for pairs of functions to pass to roundtrip(),
then checks for binary_operation() and ufunc() functions,
and any others are passed to fuzz().

For example, try hypothesis write gzip on the command line!

	
hypothesis.extra.ghostwriter.fuzz(func, *, except_=(), style='pytest', annotate=None)

	Write source code for a property-based test of func.

The resulting test checks that valid input only leads to expected exceptions.
For example:

from re import compile, error

from hypothesis.extra import ghostwriter

ghostwriter.fuzz(compile, except_=error)

Gives:

This test code was written by the `hypothesis.extra.ghostwriter` module
and is provided under the Creative Commons Zero public domain dedication.
import re

from hypothesis import given, reject, strategies as st

TODO: replace st.nothing() with an appropriate strategy

@given(pattern=st.nothing(), flags=st.just(0))
def test_fuzz_compile(pattern, flags):
 try:
 re.compile(pattern=pattern, flags=flags)
 except re.error:
 reject()

Note that it includes all the required imports.
Because the pattern parameter doesn’t have annotations or a default argument,
you’ll need to specify a strategy - for example text()
or binary(). After that, you have a test!

	
hypothesis.extra.ghostwriter.idempotent(

	func,

	*,

	except_=(),

	style='pytest',

	annotate=None,

)

	Write source code for a property-based test of func.

The resulting test checks that if you call func on it’s own output,
the result does not change. For example:

from typing import Sequence

from hypothesis.extra import ghostwriter

def timsort(seq: Sequence[int]) -> Sequence[int]:
 return sorted(seq)

ghostwriter.idempotent(timsort)

Gives:

This test code was written by the `hypothesis.extra.ghostwriter` module
and is provided under the Creative Commons Zero public domain dedication.

from hypothesis import given, strategies as st

@given(seq=st.one_of(st.binary(), st.binary().map(bytearray), st.lists(st.integers())))
def test_idempotent_timsort(seq):
 result = timsort(seq=seq)
 repeat = timsort(seq=result)
 assert result == repeat, (result, repeat)

	
hypothesis.extra.ghostwriter.roundtrip(*funcs, except_=(), style='pytest', annotate=None)

	Write source code for a property-based test of funcs.

The resulting test checks that if you call the first function, pass the result
to the second (and so on), the final result is equal to the first input argument.

This is a very powerful property to test, especially when the config options
are varied along with the object to round-trip. For example, try ghostwriting
a test for json.dumps() [https://docs.python.org/3/library/json.html#json.dumps] - would you have thought of all that?

hypothesis write --roundtrip json.dumps json.loads

	
hypothesis.extra.ghostwriter.equivalent(

	*funcs,

	allow_same_errors=False,

	except_=(),

	style='pytest',

	annotate=None,

)

	Write source code for a property-based test of funcs.

The resulting test checks that calling each of the functions returns
an equal value. This can be used as a classic ‘oracle’, such as testing
a fast sorting algorithm against the sorted() [https://docs.python.org/3/library/functions.html#sorted] builtin, or
for differential testing where none of the compared functions are fully
trusted but any difference indicates a bug (e.g. running a function on
different numbers of threads, or simply multiple times).

The functions should have reasonably similar signatures, as only the
common parameters will be passed the same arguments - any other parameters
will be allowed to vary.

If allow_same_errors is True, then the test will pass if calling each of
the functions returns an equal value, or if the first function raises an
exception and each of the others raises an exception of the same type.
This relaxed mode can be useful for code synthesis projects.

	
hypothesis.extra.ghostwriter.binary_operation(

	func,

	*,

	associative=True,

	commutative=True,

	identity=Ellipsis,

	distributes_over=None,

	except_=(),

	style='pytest',

	annotate=None,

)

	Write property tests for the binary operation func.

While binary operations [https://en.wikipedia.org/wiki/Binary_operation] are not particularly
common, they have such nice properties to test that it seems a shame not to
demonstrate them with a ghostwriter. For an operator f, test that:

	if associative [https://en.wikipedia.org/wiki/Associative_property],
f(a, f(b, c)) == f(f(a, b), c)

	if commutative [https://en.wikipedia.org/wiki/Commutative_property], f(a, b) == f(b, a)

	if identity [https://en.wikipedia.org/wiki/Identity_element] is not None, f(a, identity) == a

	if distributes_over [https://en.wikipedia.org/wiki/Distributive_property] is +,
f(a, b) + f(a, c) == f(a, b+c)

For example:

ghostwriter.binary_operation(
 operator.mul,
 identity=1,
 distributes_over=operator.add,
 style="unittest",
)

	
hypothesis.extra.ghostwriter.ufunc(func, *, except_=(), style='pytest', annotate=None)

	Write a property-based test for the array ufunc [https://numpy.org/doc/stable/reference/ufuncs.html] func.

The resulting test checks that your ufunc or gufunc [https://numpy.org/doc/stable/reference/c-api/generalized-ufuncs.html] has the expected broadcasting and dtype casting
behaviour. You will probably want to add extra assertions, but as with the other
ghostwriters this gives you a great place to start.

hypothesis write numpy.matmul

A note for test-generation researchers

Ghostwritten tests are intended as a starting point for human authorship,
to demonstrate best practice, help novices past blank-page paralysis, and save time
for experts. They may be ready-to-run, or include placeholders and # TODO:
comments to fill in strategies for unknown types. In either case, improving tests
for their own code gives users a well-scoped and immediately rewarding context in
which to explore property-based testing.

By contrast, most test-generation tools aim to produce ready-to-run test suites…
and implicitly assume that the current behavior is the desired behavior.
However, the code might contain bugs, and we want our tests to fail if it does!
Worse, tools require that the code to be tested is finished and executable,
making it impossible to generate tests as part of the development process.

Fraser 2013 [https://doi.org/10.1145/2483760.2483774] found that evolving a high-coverage test suite (e.g. Randoop [https://homes.cs.washington.edu/~mernst/pubs/feedback-testgen-icse2007.pdf], EvoSuite [https://www.evosuite.org/wp-content/papercite-data/pdf/esecfse11.pdf], Pynguin [https://arxiv.org/abs/2007.14049])
“leads to clear improvements in commonly applied quality metrics such as code coverage
[but] no measurable improvement in the number of bugs actually found by developers”
and that “generating a set of test cases, even high coverage test cases,
does not necessarily improve our ability to test software”.
Invariant detection (famously Daikon [https://plse.cs.washington.edu/daikon/pubs/]; in PBT see e.g. Alonso 2022 [https://doi.org/10.1145/3540250.3559080],
QuickSpec [http://www.cse.chalmers.se/~nicsma/papers/quickspec2.pdf], Speculate [https://matela.com.br/paper/speculate.pdf]) relies on code execution. Program slicing (e.g. FUDGE [https://research.google/pubs/pub48314/],
FuzzGen [https://www.usenix.org/conference/usenixsecurity20/presentation/ispoglou], WINNIE [https://www.ndss-symposium.org/wp-content/uploads/2021-334-paper.pdf]) requires downstream consumers of the code to test.

Ghostwriter inspects the function name, argument names and types, and docstrings.
It can be used on buggy or incomplete code, runs in a few seconds, and produces
a single semantically-meaningful test per function or group of functions.
Rather than detecting regressions, these tests check semantic properties such as
encode/decode or save/load round-trips [https://zhd.dev/ghostwriter/?q=gzip.compress],
for commutative, associative, and distributive operations [https://zhd.dev/ghostwriter/?q=operator.mul],
equivalence between methods [https://zhd.dev/ghostwriter/?q=operator.add+numpy.add],
array shapes [https://zhd.dev/ghostwriter/?q=numpy.matmul],
and idempotence. Where no property is detected, we simply check for
‘no error on valid input’ and allow the user to supply their own invariants.

Evaluations such as the SBFT24 [https://arxiv.org/abs/2401.15189] competition [https://github.com/ThunderKey/python-tool-competition-2024] measure performance on a task which
the Ghostwriter is not intended to perform. I’d love to see qualitative user
studies, such as PBT in Practice [https://harrisongoldste.in/papers/icse24-pbt-in-practice.pdf] for test generation, which could check
whether the Ghostwriter is onto something or tilting at windmills.
If you’re interested in similar questions, drop me an email!

Hypothesis for Django users

Hypothesis offers a number of features specific for Django testing, available
in the hypothesis[django] extra. This is tested
against each supported series with mainstream or extended support -
if you’re still getting security patches, you can test with Hypothesis.

	
class hypothesis.extra.django.TestCase

	

Using it is quite straightforward: All you need to do is subclass
hypothesis.extra.django.TestCase or
hypothesis.extra.django.TransactionTestCase or
LiveServerTestCase or
StaticLiveServerTestCase
and you can use @given as normal,
and the transactions will be per example
rather than per test function as they would be if you used @given with a normal
django test suite (this is important because your test function will be called
multiple times and you don’t want them to interfere with each other). Test cases
on these classes that do not use
@given will be run as normal.

	
class hypothesis.extra.django.TransactionTestCase

	

	
class hypothesis.extra.django.LiveServerTestCase

	

	
class hypothesis.extra.django.StaticLiveServerTestCase

	

We recommend avoiding TransactionTestCase
unless you really have to run each test case in a database transaction.
Because Hypothesis runs this in a loop, the performance problems it normally has
are significantly exacerbated and your tests will be really slow.
If you are using TransactionTestCase,
you may need to use @settings(suppress_health_check=[HealthCheck.too_slow])
to avoid errors due to slow example generation.

Having set up a test class, you can now pass @given
a strategy for Django models:

	
hypothesis.extra.django.from_model(model, /, **field_strategies)

	Return a strategy for examples of model.

Warning

Hypothesis creates saved models. This will run inside your testing
transaction when using the test runner, but if you use the dev console
this will leave debris in your database.

model must be an subclass of Model [https://django.readthedocs.io/en/stable/ref/models/instances.html#django.db.models.Model].
Strategies for fields may be passed as keyword arguments, for example
is_staff=st.just(False). In order to support models with fields named
“model”, this is a positional-only parameter.

Hypothesis can often infer a strategy based the field type and validators,
and will attempt to do so for any required fields. No strategy will be
inferred for an AutoField [https://django.readthedocs.io/en/stable/ref/models/fields.html#django.db.models.AutoField], nullable field,
foreign key, or field for which a keyword
argument is passed to from_model(). For example,
a Shop type with a foreign key to Company could be generated with:

shop_strategy = from_model(Shop, company=from_model(Company))

Like for builds(), you can pass
... (Ellipsis [https://docs.python.org/3/library/constants.html#Ellipsis]) as a keyword argument to infer a strategy for
a field which has a default value instead of using the default.

For example, using the trivial django project we have for testing [https://github.com/HypothesisWorks/hypothesis/blob/master/hypothesis-python/tests/django/toystore/models.py]:

>>> from hypothesis.extra.django import from_model
>>> from toystore.models import Customer
>>> c = from_model(Customer).example()
>>> c
<Customer: Customer object>
>>> c.email
'jaime.urbina@gmail.com'
>>> c.name
'\U00109d3d\U000e07be\U000165f8\U0003fabf\U000c12cd\U000f1910\U00059f12\U000519b0\U0003fabf\U000f1910\U000423fb\U000423fb\U00059f12\U000e07be\U000c12cd\U000e07be\U000519b0\U000165f8\U0003fabf\U0007bc31'
>>> c.age
-873375803

Hypothesis has just created this with whatever the relevant type of data is.

Obviously the customer’s age is implausible, which is only possible because
we have not used (eg) MinValueValidator [https://django.readthedocs.io/en/stable/ref/validators.html#django.core.validators.MinValueValidator]
to set the valid range for this field (or used a
PositiveSmallIntegerField [https://django.readthedocs.io/en/stable/ref/models/fields.html#django.db.models.PositiveSmallIntegerField], which would only
need a maximum value validator).

If you do have validators attached, Hypothesis will only generate examples
that pass validation. Sometimes that will mean that we fail a
HealthCheck because of the filtering, so let’s explicitly
pass a strategy to skip validation at the strategy level:

>>> from hypothesis.strategies import integers
>>> c = from_model(Customer, age=integers(min_value=0, max_value=120)).example()
>>> c
<Customer: Customer object>
>>> c.age
5

	
hypothesis.extra.django.from_form(form, form_kwargs=None, **field_strategies)

	Return a strategy for examples of form.

form must be an subclass of Form [https://django.readthedocs.io/en/stable/ref/forms/api.html#django.forms.Form].
Strategies for fields may be passed as keyword arguments, for example
is_staff=st.just(False).

Hypothesis can often infer a strategy based the field type and validators,
and will attempt to do so for any required fields. No strategy will be
inferred for a disabled field or field for which a keyword argument
is passed to from_form().

This function uses the fields of an unbound form instance to determine
field strategies, any keyword arguments needed to instantiate the unbound
form instance can be passed into from_form() as a dict with the
keyword form_kwargs. E.g.:

shop_strategy = from_form(Shop, form_kwargs={"company_id": 5})

Like for builds(), you can pass
... (Ellipsis [https://docs.python.org/3/library/constants.html#Ellipsis]) as a keyword argument to infer a strategy for
a field which has a default value instead of using the default.

Tips and tricks

Custom field types

If you have a custom Django field type you can register it with Hypothesis’s
model deriving functionality by registering a default strategy for it:

>>> from toystore.models import CustomishField, Customish
>>> from_model(Customish).example()
hypothesis.errors.InvalidArgument: Missing arguments for mandatory field
 customish for model Customish
>>> from hypothesis.extra.django import register_field_strategy
>>> from hypothesis.strategies import just
>>> register_field_strategy(CustomishField, just("hi"))
>>> x = from_model(Customish).example()
>>> x.customish
'hi'

Note that this mapping is on exact type. Subtypes will not inherit it.

	
hypothesis.extra.django.register_field_strategy(field_type, strategy)

	Add an entry to the global field-to-strategy lookup used by
from_field().

field_type must be a subtype of django.db.models.Field [https://django.readthedocs.io/en/stable/ref/models/fields.html#django.db.models.Field] or
django.forms.Field [https://django.readthedocs.io/en/stable/ref/forms/fields.html#django.forms.Field], which must not already be registered.
strategy must be a SearchStrategy.

	
hypothesis.extra.django.from_field(field)

	Return a strategy for values that fit the given field.

This function is used by from_form() and
from_model() for any fields that require
a value, or for which you passed ... (Ellipsis [https://docs.python.org/3/library/constants.html#Ellipsis]) to infer
a strategy from an annotation.

It’s pretty similar to the core from_type()
function, with a subtle but important difference: from_field takes a
Field instance, rather than a Field subtype, so that it has access to
instance attributes such as string length and validators.

Generating child models

For the moment there’s no explicit support in hypothesis-django for generating
dependent models. i.e. a Company model will generate no Shops. However if you
want to generate some dependent models as well, you can emulate this by using
the flatmap function as follows:

from hypothesis.strategies import just, lists

def generate_with_shops(company):
 return lists(from_model(Shop, company=just(company))).map(lambda _: company)

company_with_shops_strategy = from_model(Company).flatmap(generate_with_shops)

Let’s unpack what this is doing:

The way flatmap works is that we draw a value from the original strategy, then
apply a function to it which gives us a new strategy. We then draw a value from
that strategy. So in this case we’re first drawing a company, and then we’re
drawing a list of shops belonging to that company: The just strategy is a
strategy such that drawing it always produces the individual value, so
from_model(Shop, company=just(company)) is a strategy that generates a Shop belonging
to the original company.

So the following code would give us a list of shops all belonging to the same
company:

from_model(Company).flatmap(lambda c: lists(from_model(Shop, company=just(c))))

The only difference from this and the above is that we want the company, not
the shops. This is where the inner map comes in. We build the list of shops
and then throw it away, instead returning the company we started for. This
works because the models that Hypothesis generates are saved in the database,
so we’re essentially running the inner strategy purely for the side effect of
creating those children in the database.

Generating primary key values

If your model includes a custom primary key that you want to generate
using a strategy (rather than a default auto-increment primary key)
then Hypothesis has to deal with the possibility of a duplicate
primary key.

If a model strategy generates a value for the primary key field,
Hypothesis will create the model instance with
update_or_create() [https://django.readthedocs.io/en/stable/ref/models/querysets.html#django.db.models.query.QuerySet.update_or_create],
overwriting any existing instance in the database for this test case
with the same primary key.

On the subject of MultiValueField

Django forms feature the MultiValueField [https://django.readthedocs.io/en/stable/ref/forms/fields.html#django.forms.MultiValueField]
which allows for several fields to be combined under a single named field, the
default example of this is the SplitDateTimeField [https://django.readthedocs.io/en/stable/ref/forms/fields.html#django.forms.SplitDateTimeField].

class CustomerForm(forms.Form):
 name = forms.CharField()
 birth_date_time = forms.SplitDateTimeField()

from_form supports MultiValueField subclasses directly, however if you
want to define your own strategy be forewarned that Django binds data for a
MultiValueField in a peculiar way. Specifically each sub-field is expected
to have its own entry in data addressed by the field name
(e.g. birth_date_time) and the index of the sub-field within the
MultiValueField, so form data for the example above might look
like this:

{
 "name": "Samuel John",
 "birth_date_time_0": "2018-05-19", # the date, as the first sub-field
 "birth_date_time_1": "15:18:00", # the time, as the second sub-field
}

Thus, if you want to define your own strategies for such a field you must
address your sub-fields appropriately:

from_form(CustomerForm, birth_date_time_0=just("2018-05-19"))

Hypothesis for the scientific stack

numpy

Hypothesis offers a number of strategies for NumPy [https://numpy.org/] testing,
available in the hypothesis[numpy] extra.
It lives in the hypothesis.extra.numpy package.

The centerpiece is the arrays() strategy, which generates arrays with
any dtype, shape, and contents you can specify or give a strategy for.
To make this as useful as possible, strategies are provided to generate array
shapes and generate all kinds of fixed-size or compound dtypes.

	
hypothesis.extra.numpy.from_dtype(

	dtype,

	*,

	alphabet=None,

	min_size=0,

	max_size=None,

	min_value=None,

	max_value=None,

	allow_nan=None,

	allow_infinity=None,

	allow_subnormal=None,

	exclude_min=None,

	exclude_max=None,

	min_magnitude=0,

	max_magnitude=None,

)

	Creates a strategy which can generate any value of the given dtype.

Compatible parameters are passed to the inferred strategy function while
inapplicable ones are ignored.
This allows you, for example, to customise the min and max values,
control the length or contents of strings, or exclude non-finite
numbers. This is particularly useful when kwargs are passed through from
arrays() which allow a variety of numeric dtypes, as it seamlessly
handles the width or representable bounds for you.

	
hypothesis.extra.numpy.arrays(

	dtype,

	shape,

	*,

	elements=None,

	fill=None,

	unique=False,

)

	Returns a strategy for generating numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]s.

	dtype may be any valid input to dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype]
(this includes dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype] objects), or a strategy that
generates such values.

	shape may be an integer >= 0, a tuple of such integers, or a
strategy that generates such values.

	elements is a strategy for generating values to put in the array.
If it is None a suitable value will be inferred based on the dtype,
which may give any legal value (including eg NaN for floats).
If a mapping, it will be passed as **kwargs to from_dtype()

	fill is a strategy that may be used to generate a single background
value for the array. If None, a suitable default will be inferred
based on the other arguments. If set to
nothing() then filling
behaviour will be disabled entirely and every element will be generated
independently.

	unique specifies if the elements of the array should all be
distinct from one another. Note that in this case multiple NaN values
may still be allowed. If fill is also set, the only valid values for
it to return are NaN values (anything for which numpy.isnan [https://numpy.org/doc/stable/reference/generated/numpy.isnan.html#numpy.isnan]
returns True. So e.g. for complex numbers nan+1j is also a valid fill).
Note that if unique is set to True the generated values must be
hashable.

Arrays of specified dtype and shape are generated for example
like this:

>>> import numpy as np
>>> arrays(np.int8, (2, 3)).example()
array([[-8, 6, 3],
 [-6, 4, 6]], dtype=int8)
>>> arrays(np.float, 3, elements=st.floats(0, 1)).example()
array([0.88974794, 0.77387938, 0.1977879])

Array values are generated in two parts:

	Some subset of the coordinates of the array are populated with a value
drawn from the elements strategy (or its inferred form).

	If any coordinates were not assigned in the previous step, a single
value is drawn from the fill strategy and is assigned to all remaining
places.

You can set fill=nothing() to
disable this behaviour and draw a value for every element.

If fill=None, then it will attempt to infer the correct behaviour
automatically. If unique is True, no filling will occur by default.
Otherwise, if it looks safe to reuse the values of elements across
multiple coordinates (this will be the case for any inferred strategy, and
for most of the builtins, but is not the case for mutable values or
strategies built with flatmap, map, composite, etc) then it will use the
elements strategy as the fill, else it will default to having no fill.

Having a fill helps Hypothesis craft high quality examples, but its
main importance is when the array generated is large: Hypothesis is
primarily designed around testing small examples. If you have arrays with
hundreds or more elements, having a fill value is essential if you want
your tests to run in reasonable time.

	
hypothesis.extra.numpy.array_shapes(

	*,

	min_dims=1,

	max_dims=None,

	min_side=1,

	max_side=None,

)

	Return a strategy for array shapes (tuples of int >= 1).

	min_dims is the smallest length that the generated shape can possess.

	max_dims is the largest length that the generated shape can possess,
defaulting to min_dims + 2.

	min_side is the smallest size that a dimension can possess.

	max_side is the largest size that a dimension can possess,
defaulting to min_side + 5.

	
hypothesis.extra.numpy.scalar_dtypes()

	Return a strategy that can return any non-flexible scalar dtype.

	
hypothesis.extra.numpy.unsigned_integer_dtypes(

	*,

	endianness='?',

	sizes=(8, 16, 32, 64),

)

	Return a strategy for unsigned integer dtypes.

endianness may be < for little-endian, > for big-endian,
= for native byte order, or ? to allow either byte order.
This argument only applies to dtypes of more than one byte.

sizes must be a collection of integer sizes in bits. The default
(8, 16, 32, 64) covers the full range of sizes.

	
hypothesis.extra.numpy.integer_dtypes(*, endianness='?', sizes=(8, 16, 32, 64))

	Return a strategy for signed integer dtypes.

endianness and sizes are treated as for
unsigned_integer_dtypes().

	
hypothesis.extra.numpy.floating_dtypes(*, endianness='?', sizes=(16, 32, 64))

	Return a strategy for floating-point dtypes.

sizes is the size in bits of floating-point number. Some machines support
96- or 128-bit floats, but these are not generated by default.

Larger floats (96 and 128 bit real parts) are not supported on all
platforms and therefore disabled by default. To generate these dtypes,
include these values in the sizes argument.

	
hypothesis.extra.numpy.complex_number_dtypes(*, endianness='?', sizes=(64, 128))

	Return a strategy for complex-number dtypes.

sizes is the total size in bits of a complex number, which consists
of two floats. Complex halves (a 16-bit real part) are not supported
by numpy and will not be generated by this strategy.

	
hypothesis.extra.numpy.datetime64_dtypes(

	*,

	max_period='Y',

	min_period='ns',

	endianness='?',

)

	Return a strategy for datetime64 dtypes, with various precisions from
year to attosecond.

	
hypothesis.extra.numpy.timedelta64_dtypes(

	*,

	max_period='Y',

	min_period='ns',

	endianness='?',

)

	Return a strategy for timedelta64 dtypes, with various precisions from
year to attosecond.

	
hypothesis.extra.numpy.byte_string_dtypes(*, endianness='?', min_len=1, max_len=16)

	Return a strategy for generating bytestring dtypes, of various lengths
and byteorder.

While Hypothesis’ string strategies can generate empty strings, string
dtypes with length 0 indicate that size is still to be determined, so
the minimum length for string dtypes is 1.

	
hypothesis.extra.numpy.unicode_string_dtypes(

	*,

	endianness='?',

	min_len=1,

	max_len=16,

)

	Return a strategy for generating unicode string dtypes, of various
lengths and byteorder.

While Hypothesis’ string strategies can generate empty strings, string
dtypes with length 0 indicate that size is still to be determined, so
the minimum length for string dtypes is 1.

	
hypothesis.extra.numpy.array_dtypes(

	subtype_strategy=scalar_dtypes(),

	*,

	min_size=1,

	max_size=5,

	allow_subarrays=False,

)

	Return a strategy for generating array (compound) dtypes, with members
drawn from the given subtype strategy.

	
hypothesis.extra.numpy.nested_dtypes(

	subtype_strategy=scalar_dtypes(),

	*,

	max_leaves=10,

	max_itemsize=None,

)

	Return the most-general dtype strategy.

Elements drawn from this strategy may be simple (from the
subtype_strategy), or several such values drawn from
array_dtypes() with allow_subarrays=True. Subdtypes in an
array dtype may be nested to any depth, subject to the max_leaves
argument.

	
hypothesis.extra.numpy.valid_tuple_axes(ndim, *, min_size=0, max_size=None)

	Return a strategy for generating permissible tuple-values for the
axis argument for a numpy sequential function (e.g.
numpy.sum() [https://numpy.org/doc/stable/reference/generated/numpy.sum.html#numpy.sum]), given an array of the specified
dimensionality.

All tuples will have a length >= min_size and <= max_size. The default
value for max_size is ndim.

Examples from this strategy shrink towards an empty tuple, which render most
sequential functions as no-ops.

The following are some examples drawn from this strategy.

>>> [valid_tuple_axes(3).example() for i in range(4)]
[(-3, 1), (0, 1, -1), (0, 2), (0, -2, 2)]

valid_tuple_axes can be joined with other strategies to generate
any type of valid axis object, i.e. integers, tuples, and None:

any_axis_strategy = none() | integers(-ndim, ndim - 1) | valid_tuple_axes(ndim)

	
hypothesis.extra.numpy.broadcastable_shapes(

	shape,

	*,

	min_dims=0,

	max_dims=None,

	min_side=1,

	max_side=None,

)

	Return a strategy for shapes that are broadcast-compatible with the
provided shape.

Examples from this strategy shrink towards a shape with length min_dims.
The size of an aligned dimension shrinks towards size 1. The size of an
unaligned dimension shrink towards min_side.

	shape is a tuple of integers.

	min_dims is the smallest length that the generated shape can possess.

	max_dims is the largest length that the generated shape can possess,
defaulting to max(len(shape), min_dims) + 2.

	min_side is the smallest size that an unaligned dimension can possess.

	max_side is the largest size that an unaligned dimension can possess,
defaulting to 2 plus the size of the largest aligned dimension.

The following are some examples drawn from this strategy.

>>> [broadcastable_shapes(shape=(2, 3)).example() for i in range(5)]
[(1, 3), (), (2, 3), (2, 1), (4, 1, 3), (3,)]

	
hypothesis.extra.numpy.mutually_broadcastable_shapes(

	*,

	num_shapes=not_set,

	signature=not_set,

	base_shape=(),

	min_dims=0,

	max_dims=None,

	min_side=1,

	max_side=None,

)

	Return a strategy for a specified number of shapes N that are
mutually-broadcastable with one another and with the provided base shape.

	num_shapes is the number of mutually broadcast-compatible shapes to generate.

	base_shape is the shape against which all generated shapes can broadcast.
The default shape is empty, which corresponds to a scalar and thus does
not constrain broadcasting at all.

	min_dims is the smallest length that the generated shape can possess.

	max_dims is the largest length that the generated shape can possess,
defaulting to max(len(shape), min_dims) + 2.

	min_side is the smallest size that an unaligned dimension can possess.

	max_side is the largest size that an unaligned dimension can possess,
defaulting to 2 plus the size of the largest aligned dimension.

The strategy will generate a typing.NamedTuple [https://docs.python.org/3/library/typing.html#typing.NamedTuple] containing:

	input_shapes as a tuple of the N generated shapes.

	result_shape as the resulting shape produced by broadcasting the N shapes
with the base shape.

The following are some examples drawn from this strategy.

>>> # Draw three shapes where each shape is broadcast-compatible with (2, 3)
... strat = mutually_broadcastable_shapes(num_shapes=3, base_shape=(2, 3))
>>> for _ in range(5):
... print(strat.example())
BroadcastableShapes(input_shapes=((4, 1, 3), (4, 2, 3), ()), result_shape=(4, 2, 3))
BroadcastableShapes(input_shapes=((3,), (1, 3), (2, 3)), result_shape=(2, 3))
BroadcastableShapes(input_shapes=((), (), ()), result_shape=())
BroadcastableShapes(input_shapes=((3,), (), (3,)), result_shape=(3,))
BroadcastableShapes(input_shapes=((1, 2, 3), (3,), ()), result_shape=(1, 2, 3))

Use with Generalised Universal Function signatures

A universal function [https://numpy.org/doc/stable/reference/ufuncs.html] (or ufunc for short) is a function
that operates on ndarrays in an element-by-element fashion, supporting array
broadcasting, type casting, and several other standard features.
A generalised ufunc [https://numpy.org/doc/stable/reference/c-api/generalized-ufuncs.html] operates on
sub-arrays rather than elements, based on the “signature” of the function.
Compare e.g. numpy.add() [https://numpy.org/doc/stable/reference/generated/numpy.add.html#numpy.add] (ufunc) to
numpy.matmul() [https://numpy.org/doc/stable/reference/generated/numpy.matmul.html#numpy.matmul] (gufunc).

To generate shapes for a gufunc, you can pass the signature argument instead of
num_shapes. This must be a gufunc signature string; which you can write by
hand or access as e.g. np.matmul.signature on generalised ufuncs.

In this case, the side arguments are applied to the ‘core dimensions’ as well,
ignoring any frozen dimensions. base_shape and the dims arguments are
applied to the ‘loop dimensions’, and if necessary, the dimensionality of each
shape is silently capped to respect the 32-dimension limit.

The generated result_shape is the real result shape of applying the gufunc
to arrays of the generated input_shapes, even where this is different to
broadcasting the loop dimensions.

gufunc-compatible shapes shrink their loop dimensions as above, towards omitting
optional core dimensions, and smaller-size core dimensions.

>>> # np.matmul.signature == "(m?,n),(n,p?)->(m?,p?)"
>>> for _ in range(3):
... mutually_broadcastable_shapes(signature=np.matmul.signature).example()
BroadcastableShapes(input_shapes=((2,), (2,)), result_shape=())
BroadcastableShapes(input_shapes=((3, 4, 2), (1, 2)), result_shape=(3, 4))
BroadcastableShapes(input_shapes=((4, 2), (1, 2, 3)), result_shape=(4, 3))

	
hypothesis.extra.numpy.basic_indices(

	shape,

	*,

	min_dims=0,

	max_dims=None,

	allow_newaxis=False,

	allow_ellipsis=True,

)

	Return a strategy for basic indexes [https://numpy.org/doc/stable/reference/arrays.indexing.html] of
arrays with the specified shape, which may include dimensions of size zero.

It generates tuples containing some mix of integers, slice [https://docs.python.org/3/library/functions.html#slice]
objects, ... (an Ellipsis), and None. When a length-one tuple
would be generated, this strategy may instead return the element which will
index the first axis, e.g. 5 instead of (5,).

	shape is the shape of the array that will be indexed, as a tuple of
positive integers. This must be at least two-dimensional for a tuple to be
a valid index; for one-dimensional arrays use
slices() instead.

	min_dims is the minimum dimensionality of the resulting array from use
of the generated index. When min_dims == 0, scalars and zero-dimensional
arrays are both allowed.

	max_dims is the the maximum dimensionality of the resulting array,
defaulting to len(shape) if not allow_newaxis else
max(len(shape), min_dims) + 2.

	allow_newaxis specifies whether None is allowed in the index.

	allow_ellipsis specifies whether ... is allowed in the index.

	
hypothesis.extra.numpy.integer_array_indices(

	shape,

	*,

	result_shape=array_shapes(),

	dtype=dtype('int64'),

)

	Return a search strategy for tuples of integer-arrays that, when used
to index into an array of shape shape, given an array whose shape
was drawn from result_shape.

Examples from this strategy shrink towards the tuple of index-arrays:

len(shape) * (np.zeros(drawn_result_shape, dtype),)

	shape a tuple of integers that indicates the shape of the array,
whose indices are being generated.

	result_shape a strategy for generating tuples of integers, which
describe the shape of the resulting index arrays. The default is
array_shapes(). The shape drawn from
this strategy determines the shape of the array that will be produced
when the corresponding example from integer_array_indices is used
as an index.

	dtype the integer data type of the generated index-arrays. Negative
integer indices can be generated if a signed integer type is specified.

Recall that an array can be indexed using a tuple of integer-arrays to
access its members in an arbitrary order, producing an array with an
arbitrary shape. For example:

>>> from numpy import array
>>> x = array([-0, -1, -2, -3, -4])
>>> ind = (array([[4, 0], [0, 1]]),) # a tuple containing a 2D integer-array
>>> x[ind] # the resulting array is commensurate with the indexing array(s)
array([[-4, 0],
 [0, -1]])

Note that this strategy does not accommodate all variations of so-called
‘advanced indexing’, as prescribed by NumPy’s nomenclature. Combinations
of basic and advanced indexes are too complex to usefully define in a
standard strategy; we leave application-specific strategies to the user.
Advanced-boolean indexing can be defined as arrays(shape=..., dtype=bool),
and is similarly left to the user.

pandas

Hypothesis provides strategies for several of the core pandas data types:
pandas.Index [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Index.html#pandas.Index], pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series] and pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame].

The general approach taken by the pandas module is that there are multiple
strategies for generating indexes, and all of the other strategies take the
number of entries they contain from their index strategy (with sensible defaults).
So e.g. a Series is specified by specifying its numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype] (and/or
a strategy for generating elements for it).

	
hypothesis.extra.pandas.indexes(

	*,

	elements=None,

	dtype=None,

	min_size=0,

	max_size=None,

	unique=True,

	name=none(),

)

	Provides a strategy for producing a pandas.Index [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Index.html#pandas.Index].

Arguments:

	elements is a strategy which will be used to generate the individual
values of the index. If None, it will be inferred from the dtype. Note:
even if the elements strategy produces tuples, the generated value
will not be a MultiIndex, but instead be a normal index whose elements
are tuples.

	dtype is the dtype of the resulting index. If None, it will be inferred
from the elements strategy. At least one of dtype or elements must be
provided.

	min_size is the minimum number of elements in the index.

	max_size is the maximum number of elements in the index. If None then it
will default to a suitable small size. If you want larger indexes you
should pass a max_size explicitly.

	unique specifies whether all of the elements in the resulting index
should be distinct.

	name is a strategy for strings or None, which will be passed to
the pandas.Index [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Index.html#pandas.Index] constructor.

	
hypothesis.extra.pandas.range_indexes(min_size=0, max_size=None, name=none())

	Provides a strategy which generates an Index [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Index.html#pandas.Index] whose
values are 0, 1, …, n for some n.

Arguments:

	min_size is the smallest number of elements the index can have.

	max_size is the largest number of elements the index can have. If None
it will default to some suitable value based on min_size.

	name is the name of the index. If st.none(), the index will have no name.

	
hypothesis.extra.pandas.series(

	*,

	elements=None,

	dtype=None,

	index=None,

	fill=None,

	unique=False,

	name=none(),

)

	Provides a strategy for producing a pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series].

Arguments:

	elements: a strategy that will be used to generate the individual
values in the series. If None, we will attempt to infer a suitable
default from the dtype.

	dtype: the dtype of the resulting series and may be any value
that can be passed to numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype]. If None, will use
pandas’s standard behaviour to infer it from the type of the elements
values. Note that if the type of values that comes out of your
elements strategy varies, then so will the resulting dtype of the
series.

	index: If not None, a strategy for generating indexes for the
resulting Series. This can generate either pandas.Index [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Index.html#pandas.Index]
objects or any sequence of values (which will be passed to the
Index constructor).

You will probably find it most convenient to use the
indexes() or
range_indexes() function to produce
values for this argument.

	name: is a strategy for strings or None, which will be passed to
the pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series] constructor.

Usage:

>>> series(dtype=int).example()
0 -2001747478
1 1153062837

	
class hypothesis.extra.pandas.column(

	name=None,

	elements=None,

	dtype=None,

	fill=None,

	unique=False,

)

	Data object for describing a column in a DataFrame.

Arguments:

	name: the column name, or None to default to the column position. Must
be hashable, but can otherwise be any value supported as a pandas column
name.

	elements: the strategy for generating values in this column, or None
to infer it from the dtype.

	dtype: the dtype of the column, or None to infer it from the element
strategy. At least one of dtype or elements must be provided.

	fill: A default value for elements of the column. See
arrays() for a full explanation.

	unique: If all values in this column should be distinct.

	
hypothesis.extra.pandas.columns(

	names_or_number,

	*,

	dtype=None,

	elements=None,

	fill=None,

	unique=False,

)

	A convenience function for producing a list of column objects
of the same general shape.

The names_or_number argument is either a sequence of values, the
elements of which will be used as the name for individual column
objects, or a number, in which case that many unnamed columns will
be created. All other arguments are passed through verbatim to
create the columns.

	
hypothesis.extra.pandas.data_frames(columns=None, *, rows=None, index=None)

	Provides a strategy for producing a pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame].

Arguments:

	columns: An iterable of column objects describing the shape
of the generated DataFrame.

	rows: A strategy for generating a row object. Should generate
either dicts mapping column names to values or a sequence mapping
column position to the value in that position (note that unlike the
pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] constructor, single values are not allowed
here. Passing e.g. an integer is an error, even if there is only one
column).

At least one of rows and columns must be provided. If both are
provided then the generated rows will be validated against the
columns and an error will be raised if they don’t match.

Caveats on using rows:

	In general you should prefer using columns to rows, and only use
rows if the columns interface is insufficiently flexible to
describe what you need - you will get better performance and
example quality that way.

	If you provide rows and not columns, then the shape and dtype of
the resulting DataFrame may vary. e.g. if you have a mix of int
and float in the values for one column in your row entries, the
column will sometimes have an integral dtype and sometimes a float.

	index: If not None, a strategy for generating indexes for the
resulting DataFrame. This can generate either pandas.Index [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Index.html#pandas.Index]
objects or any sequence of values (which will be passed to the
Index constructor).

You will probably find it most convenient to use the
indexes() or
range_indexes() function to produce
values for this argument.

Usage:

The expected usage pattern is that you use column and
columns() to specify a fixed shape of the DataFrame you want as
follows. For example the following gives a two column data frame:

>>> from hypothesis.extra.pandas import column, data_frames
>>> data_frames([
... column('A', dtype=int), column('B', dtype=float)]).example()
 A B
0 2021915903 1.793898e+232
1 1146643993 inf
2 -2096165693 1.000000e+07

If you want the values in different columns to interact in some way you
can use the rows argument. For example the following gives a two column
DataFrame where the value in the first column is always at most the value
in the second:

>>> from hypothesis.extra.pandas import column, data_frames
>>> import hypothesis.strategies as st
>>> data_frames(
... rows=st.tuples(st.floats(allow_nan=False),
... st.floats(allow_nan=False)).map(sorted)
...).example()
 0 1
0 -3.402823e+38 9.007199e+15
1 -1.562796e-298 5.000000e-01

You can also combine the two:

>>> from hypothesis.extra.pandas import columns, data_frames
>>> import hypothesis.strategies as st
>>> data_frames(
... columns=columns(["lo", "hi"], dtype=float),
... rows=st.tuples(st.floats(allow_nan=False),
... st.floats(allow_nan=False)).map(sorted)
...).example()
 lo hi
0 9.314723e-49 4.353037e+45
1 -9.999900e-01 1.000000e+07
2 -2.152861e+134 -1.069317e-73

(Note that the column dtype must still be specified and will not be
inferred from the rows. This restriction may be lifted in future).

Combining rows and columns has the following behaviour:

	The column names and dtypes will be used.

	If the column is required to be unique, this will be enforced.

	Any values missing from the generated rows will be provided using the
column’s fill.

	Any values in the row not present in the column specification (if
dicts are passed, if there are keys with no corresponding column name,
if sequences are passed if there are too many items) will result in
InvalidArgument being raised.

Supported versions

There is quite a lot of variation between pandas versions. We only
commit to supporting the latest version of pandas, but older minor versions are
supported on a “best effort” basis. Hypothesis is currently tested against
and confirmed working with every Pandas minor version from 1.1 through to 2.0.

Releases that are not the latest patch release of their minor version are not
tested or officially supported, but will probably also work unless you hit a
pandas bug.

Array API

Hypothesis offers strategies for Array API [https://data-apis.org/] adopting
libraries in the hypothesis.extra.array_api package. See issue #3037 [https://github.com/HypothesisWorks/hypothesis/issues/3037] for
more details. If you want to test with CuPy [https://pypi.org/project/CuPy/], Dask [https://pypi.org/project/Dask/], JAX [https://pypi.org/project/JAX/],
MXNet [https://pypi.org/project/MXNet/], PyTorch [https://pypi.org/project/torch/], TensorFlow [https://pypi.org/project/TensorFlow/], or Xarray [https://pypi.org/project/Xarray/] -
or just NumPy [https://pypi.org/project/NumPy/] - this is the extension for you!

	
hypothesis.extra.array_api.make_strategies_namespace(xp, *, api_version=None)

	Creates a strategies namespace for the given array module.

	xp is the Array API library to automatically pass to the namespaced methods.

	api_version is the version of the Array API which the returned
strategies namespace should conform to. If None, the latest API
version which xp supports will be inferred from xp.__array_api_version__.
If a version string in the YYYY.MM format, the strategies namespace
will conform to that version if supported.

A types.SimpleNamespace [https://docs.python.org/3/library/types.html#types.SimpleNamespace] is returned which contains all the
strategy methods in this module but without requiring the xp argument.
Creating and using a strategies namespace for NumPy’s Array API
implementation would go like this:

>>> xp.__array_api_version__ # xp is your desired array library
'2021.12'
>>> xps = make_strategies_namespace(xp)
>>> xps.api_version
'2021.12'
>>> x = xps.arrays(xp.int8, (2, 3)).example()
>>> x
Array([[-8, 6, 3],
 [-6, 4, 6]], dtype=int8)
>>> x.__array_namespace__() is xp
True

The resulting namespace contains all our familiar strategies like
arrays() and from_dtype(), but based on the Array API
standard semantics and returning objects from the xp module:

	
xps.from_dtype(

	dtype,

	*,

	min_value=None,

	max_value=None,

	allow_nan=None,

	allow_infinity=None,

	allow_subnormal=None,

	exclude_min=None,

	exclude_max=None,

)

	Return a strategy for any value of the given dtype.

Values generated are of the Python scalar which is
promotable [https://data-apis.org/array-api/latest/API_specification/type_promotion.html] to dtype, where the values do
not exceed its bounds.

	dtype may be a dtype object or the string name of a
valid dtype [https://data-apis.org/array-api/latest/API_specification/data_types.html].

Compatible **kwargs are passed to the inferred strategy function for
integers and floats. This allows you to customise the min and max values,
and exclude non-finite numbers. This is particularly useful when kwargs are
passed through from arrays(), as it seamlessly handles the width
or other representable bounds for you.

	
xps.arrays(

	dtype,

	shape,

	*,

	elements=None,

	fill=None,

	unique=False,

)

	Returns a strategy for arrays [https://data-apis.org/array-api/latest/API_specification/array_object.html].

	dtype may be a valid dtype [https://data-apis.org/array-api/latest/API_specification/data_types.html] object or name,
or a strategy that generates such values.

	shape may be an integer >= 0, a tuple of such integers, or a strategy
that generates such values.

	elements is a strategy for values to put in the array. If None
then a suitable value will be inferred based on the dtype, which may give
any legal value (including e.g. NaN for floats). If a mapping, it will be
passed as **kwargs to from_dtype() when inferring based on the dtype.

	fill is a strategy that may be used to generate a single background
value for the array. If None, a suitable default will be inferred
based on the other arguments. If set to
nothing() then filling behaviour will be
disabled entirely and every element will be generated independently.

	unique specifies if the elements of the array should all be distinct
from one another; if fill is also set, the only valid values for fill to
return are NaN values.

Arrays of specified dtype and shape are generated for example
like this:

>>> from numpy import array_api as xp
>>> xps.arrays(xp, xp.int8, (2, 3)).example()
Array([[-8, 6, 3],
 [-6, 4, 6]], dtype=int8)

Specifying element boundaries by a dict [https://docs.python.org/3/library/stdtypes.html#dict] of the kwargs to pass
to from_dtype() will ensure dtype bounds will be respected.

>>> xps.arrays(xp, xp.int8, 3, elements={"min_value": 10}).example()
Array([125, 13, 79], dtype=int8)

Refer to What you can generate and how for passing
your own elements strategy.

>>> xps.arrays(xp, xp.float32, 3, elements=floats(0, 1, width=32)).example()
Array([0.88974794, 0.77387938, 0.1977879], dtype=float32)

Array values are generated in two parts:

	A single value is drawn from the fill strategy and is used to create a
filled array.

	Some subset of the coordinates of the array are populated with a value
drawn from the elements strategy (or its inferred form).

You can set fill to nothing() if you want
to disable this behaviour and draw a value for every element.

By default arrays will attempt to infer the correct fill behaviour: if
unique is also True, no filling will occur. Otherwise, if it looks
safe to reuse the values of elements across multiple coordinates (this will
be the case for any inferred strategy, and for most of the builtins, but is
not the case for mutable values or strategies built with flatmap, map,
composite, etc.) then it will use the elements strategy as the fill, else it
will default to having no fill.

Having a fill helps Hypothesis craft high quality examples, but its
main importance is when the array generated is large: Hypothesis is
primarily designed around testing small examples. If you have arrays with
hundreds or more elements, having a fill value is essential if you want
your tests to run in reasonable time.

	
xps.array_shapes(

	*,

	min_dims=1,

	max_dims=None,

	min_side=1,

	max_side=None,

)

	Return a strategy for array shapes (tuples of int >= 1).

	min_dims is the smallest length that the generated shape can possess.

	max_dims is the largest length that the generated shape can possess,
defaulting to min_dims + 2.

	min_side is the smallest size that a dimension can possess.

	max_side is the largest size that a dimension can possess,
defaulting to min_side + 5.

	
xps.scalar_dtypes()

	Return a strategy for all valid dtype [https://data-apis.org/array-api/latest/API_specification/data_types.html] objects.

	
xps.boolean_dtypes()

	Return a strategy for just the boolean dtype object.

	
xps.numeric_dtypes()

	Return a strategy for all numeric dtype objects.

	
xps.real_dtypes()

	Return a strategy for all real-valued dtype objects.

	
xps.integer_dtypes(*, sizes=(8, 16, 32, 64))

	Return a strategy for signed integer dtype objects.

sizes contains the signed integer sizes in bits, defaulting to
(8, 16, 32, 64) which covers all valid sizes.

	
xps.unsigned_integer_dtypes(*, sizes=(8, 16, 32, 64))

	Return a strategy for unsigned integer dtype objects.

sizes contains the unsigned integer sizes in bits, defaulting to
(8, 16, 32, 64) which covers all valid sizes.

	
xps.floating_dtypes(*, sizes=(32, 64))

	Return a strategy for real-valued floating-point dtype objects.

sizes contains the floating-point sizes in bits, defaulting to
(32, 64) which covers all valid sizes.

	
xps.complex_dtypes(*, sizes=(64, 128))

	Return a strategy for complex dtype objects.

sizes contains the complex sizes in bits, defaulting to (64, 128)
which covers all valid sizes.

	
xps.valid_tuple_axes(ndim, *, min_size=0, max_size=None)

	Return a strategy for permissible tuple-values for the axis
argument in Array API sequential methods e.g. sum, given the specified
dimensionality.

All tuples will have a length >= min_size and <= max_size. The default
value for max_size is ndim.

Examples from this strategy shrink towards an empty tuple, which render most
sequential functions as no-ops.

The following are some examples drawn from this strategy.

>>> [valid_tuple_axes(3).example() for i in range(4)]
[(-3, 1), (0, 1, -1), (0, 2), (0, -2, 2)]

valid_tuple_axes can be joined with other strategies to generate
any type of valid axis object, i.e. integers, tuples, and None:

any_axis_strategy = none() | integers(-ndim, ndim - 1) | valid_tuple_axes(ndim)

	
xps.broadcastable_shapes(

	shape,

	*,

	min_dims=0,

	max_dims=None,

	min_side=1,

	max_side=None,

)

	Return a strategy for shapes that are broadcast-compatible with the
provided shape.

Examples from this strategy shrink towards a shape with length min_dims.
The size of an aligned dimension shrinks towards size 1. The size of an
unaligned dimension shrink towards min_side.

	shape is a tuple of integers.

	min_dims is the smallest length that the generated shape can possess.

	max_dims is the largest length that the generated shape can possess,
defaulting to max(len(shape), min_dims) + 2.

	min_side is the smallest size that an unaligned dimension can possess.

	max_side is the largest size that an unaligned dimension can possess,
defaulting to 2 plus the size of the largest aligned dimension.

The following are some examples drawn from this strategy.

>>> [broadcastable_shapes(shape=(2, 3)).example() for i in range(5)]
[(1, 3), (), (2, 3), (2, 1), (4, 1, 3), (3,)]

	
xps.mutually_broadcastable_shapes(

	num_shapes,

	*,

	base_shape=(),

	min_dims=0,

	max_dims=None,

	min_side=1,

	max_side=None,

)

	Return a strategy for a specified number of shapes N that are
mutually-broadcastable with one another and with the provided base shape.

	num_shapes is the number of mutually broadcast-compatible shapes to generate.

	base_shape is the shape against which all generated shapes can broadcast.
The default shape is empty, which corresponds to a scalar and thus does
not constrain broadcasting at all.

	min_dims is the smallest length that the generated shape can possess.

	max_dims is the largest length that the generated shape can possess,
defaulting to max(len(shape), min_dims) + 2.

	min_side is the smallest size that an unaligned dimension can possess.

	max_side is the largest size that an unaligned dimension can possess,
defaulting to 2 plus the size of the largest aligned dimension.

The strategy will generate a typing.NamedTuple [https://docs.python.org/3/library/typing.html#typing.NamedTuple] containing:

	input_shapes as a tuple of the N generated shapes.

	result_shape as the resulting shape produced by broadcasting the N shapes
with the base shape.

The following are some examples drawn from this strategy.

>>> # Draw three shapes where each shape is broadcast-compatible with (2, 3)
... strat = mutually_broadcastable_shapes(num_shapes=3, base_shape=(2, 3))
>>> for _ in range(5):
... print(strat.example())
BroadcastableShapes(input_shapes=((4, 1, 3), (4, 2, 3), ()), result_shape=(4, 2, 3))
BroadcastableShapes(input_shapes=((3,), (1, 3), (2, 3)), result_shape=(2, 3))
BroadcastableShapes(input_shapes=((), (), ()), result_shape=())
BroadcastableShapes(input_shapes=((3,), (), (3,)), result_shape=(3,))
BroadcastableShapes(input_shapes=((1, 2, 3), (3,), ()), result_shape=(1, 2, 3))

	
xps.indices(

	shape,

	*,

	min_dims=0,

	max_dims=None,

	allow_newaxis=False,

	allow_ellipsis=True,

)

	Return a strategy for valid indices [https://data-apis.org/array-api/latest/API_specification/indexing.html] of
arrays with the specified shape, which may include dimensions of size zero.

It generates tuples containing some mix of integers, slice [https://docs.python.org/3/library/functions.html#slice]
objects, ... (an Ellipsis), and None. When a length-one tuple
would be generated, this strategy may instead return the element which will
index the first axis, e.g. 5 instead of (5,).

	shape is the shape of the array that will be indexed, as a tuple of
integers >= 0. This must be at least two-dimensional for a tuple to be a
valid index; for one-dimensional arrays use
slices() instead.

	min_dims is the minimum dimensionality of the resulting array from use
of the generated index.

	max_dims is the the maximum dimensionality of the resulting array,
defaulting to len(shape) if not allow_newaxis else
max(len(shape), min_dims) + 2.

	allow_ellipsis specifies whether None is allowed in the index.

	allow_ellipsis specifies whether ... is allowed in the index.

The Hypothesis example database

When Hypothesis finds a bug it stores enough information in its database to reproduce it. This
enables you to have a classic testing workflow of find a bug, fix a bug, and be confident that
this is actually doing the right thing because Hypothesis will start by retrying the examples that
broke things last time.

Limitations

The database is best thought of as a cache that you never need to invalidate: Information may be
lost when you upgrade a Hypothesis version or change your test, so you shouldn’t rely on it for
correctness - if there’s an example you want to ensure occurs each time then there’s a feature for
including them in your source code - but it helps the development
workflow considerably by making sure that the examples you’ve just found are reproduced.

The database also records examples that exercise less-used parts of your
code, so the database may update even when no failing examples were found.

Upgrading Hypothesis and changing your tests

The design of the Hypothesis database is such that you can put arbitrary data in the database
and not get wrong behaviour. When you upgrade Hypothesis, old data might be invalidated, but
this should happen transparently. It can never be the case that e.g. changing the strategy
that generates an argument gives you data from the old strategy.

ExampleDatabase implementations

Hypothesis’ default database setting creates a
DirectoryBasedExampleDatabase in your current working directory,
under .hypothesis/examples. If this location is unusable, e.g. because you do not have
read or write permissions, Hypothesis will emit a warning and fall back to an
InMemoryExampleDatabase.

Hypothesis provides the following ExampleDatabase implementations:

	
class hypothesis.database.InMemoryExampleDatabase

	A non-persistent example database, implemented in terms of a dict of sets.

This can be useful if you call a test function several times in a single
session, or for testing other database implementations, but because it
does not persist between runs we do not recommend it for general use.

	
class hypothesis.database.DirectoryBasedExampleDatabase(path)

	Use a directory to store Hypothesis examples as files.

Each test corresponds to a directory, and each example to a file within that
directory. While the contents are fairly opaque, a
DirectoryBasedExampleDatabase can be shared by checking the directory
into version control, for example with the following .gitignore:

Ignore files cached by Hypothesis...
.hypothesis/*
except for the examples directory
!.hypothesis/examples/

Note however that this only makes sense if you also pin to an exact version of
Hypothesis, and we would usually recommend implementing a shared database with
a network datastore - see ExampleDatabase, and
the MultiplexedDatabase helper.

	
class hypothesis.database.GitHubArtifactDatabase(

	owner,

	repo,

	artifact_name='hypothesis-example-db',

	cache_timeout=datetime.timedelta(days=1),

	path=None,

)

	A file-based database loaded from a GitHub Actions [https://docs.github.com/en/actions] artifact.

You can use this for sharing example databases between CI runs and developers, allowing
the latter to get read-only access to the former. This is particularly useful for
continuous fuzzing (i.e. with HypoFuzz [https://hypofuzz.com/]),
where the CI system can help find new failing examples through fuzzing,
and developers can reproduce them locally without any manual effort.

Note

You must provide GITHUB_TOKEN as an environment variable. In CI, Github Actions provides
this automatically, but it needs to be set manually for local usage. In a developer machine,
this would usually be a Personal Access Token [https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token].
If the repository is private, it’s necessary for the token to have repo scope
in the case of a classic token, or actions:read in the case of a fine-grained token.

In most cases, this will be used
through the MultiplexedDatabase,
by combining a local directory-based database with this one. For example:

local = DirectoryBasedExampleDatabase(".hypothesis/examples")
shared = ReadOnlyDatabase(GitHubArtifactDatabase("user", "repo"))

settings.register_profile("ci", database=local)
settings.register_profile("dev", database=MultiplexedDatabase(local, shared))
We don't want to use the shared database in CI, only to populate its local one.
which the workflow should then upload as an artifact.
settings.load_profile("ci" if os.environ.get("CI") else "dev")

Note

Because this database is read-only, you always need to wrap it with the
ReadOnlyDatabase.

A setup like this can be paired with a GitHub Actions workflow including
something like the following:

- name: Download example database
 uses: dawidd6/action-download-artifact@v2.24.3
 with:
 name: hypothesis-example-db
 path: .hypothesis/examples
 if_no_artifact_found: warn
 workflow_conclusion: completed

- name: Run tests
 run: pytest

- name: Upload example database
 uses: actions/upload-artifact@v3
 if: always()
 with:
 name: hypothesis-example-db
 path: .hypothesis/examples

In this workflow, we use dawidd6/action-download-artifact [https://github.com/dawidd6/action-download-artifact]
to download the latest artifact given that the official actions/download-artifact [https://github.com/actions/download-artifact]
does not support downloading artifacts from previous workflow runs.

The database automatically implements a simple file-based cache with a default expiration period
of 1 day. You can adjust this through the cache_timeout property.

For mono-repo support, you can provide a unique artifact_name (e.g. hypofuzz-example-db-frontend).

	
class hypothesis.database.ReadOnlyDatabase(db)

	A wrapper to make the given database read-only.

The implementation passes through fetch, and turns save, delete, and
move into silent no-ops.

Note that this disables Hypothesis’ automatic discarding of stale examples.
It is designed to allow local machines to access a shared database (e.g. from CI
servers), without propagating changes back from a local or in-development branch.

	
class hypothesis.database.MultiplexedDatabase(*dbs)

	A wrapper around multiple databases.

Each save, fetch, move, or delete operation will be run against
all of the wrapped databases. fetch does not yield duplicate values, even
if the same value is present in two or more of the wrapped databases.

This combines well with a ReadOnlyDatabase, as follows:

local = DirectoryBasedExampleDatabase("/tmp/hypothesis/examples/")
shared = CustomNetworkDatabase()

settings.register_profile("ci", database=shared)
settings.register_profile(
 "dev", database=MultiplexedDatabase(local, ReadOnlyDatabase(shared))
)
settings.load_profile("ci" if os.environ.get("CI") else "dev")

So your CI system or fuzzing runs can populate a central shared database;
while local runs on development machines can reproduce any failures from CI
but will only cache their own failures locally and cannot remove examples
from the shared database.

	
class hypothesis.extra.redis.RedisExampleDatabase(

	redis,

	*,

	expire_after=datetime.timedelta(days=8),

	key_prefix=b'hypothesis-example:',

)

	Store Hypothesis examples as sets in the given Redis [https://redis-py.readthedocs.io/en/stable/connections.html#redis.Redis] datastore.

This is particularly useful for shared databases, as per the recipe
for a MultiplexedDatabase.

Note

If a test has not been run for expire_after, those examples will be allowed
to expire. The default time-to-live persists examples between weekly runs.

Defining your own ExampleDatabase

You can define your ExampleDatabase, for example
to use a shared datastore, with just a few methods:

	
class hypothesis.database.ExampleDatabase(*args, **kwargs)

	An abstract base class for storing examples in Hypothesis’ internal format.

An ExampleDatabase maps each bytes key to many distinct bytes
values, like a Mapping[bytes, AbstractSet[bytes]].

	
abstract save(key, value)

	Save value under key.

If this value is already present for this key, silently do nothing.

	
abstract fetch(key)

	Return an iterable over all values matching this key.

	
abstract delete(key, value)

	Remove this value from this key.

If this value is not present, silently do nothing.

	
move(src, dest, value)

	Move value from key src to key dest. Equivalent to
delete(src, value) followed by save(src, value), but may
have a more efficient implementation.

Note that value will be inserted at dest regardless of whether
it is currently present at src.

Stateful testing

With @given, your tests are still something that
you mostly write yourself, with Hypothesis providing some data.
With Hypothesis’s stateful testing, Hypothesis instead tries to generate
not just data but entire tests. You specify a number of primitive
actions that can be combined together, and then Hypothesis will
try to find sequences of those actions that result in a failure.

Tip

Before reading this reference documentation, we recommend reading
How not to Die Hard with Hypothesis [https://hypothesis.works/articles/how-not-to-die-hard-with-hypothesis/]
and An Introduction to Rule-Based Stateful Testing [https://hypothesis.works/articles/rule-based-stateful-testing/],
in that order. The implementation details will make more sense once you’ve seen
them used in practice, and know why each method or decorator is available.

Note

This style of testing is often called model-based testing, but in Hypothesis
is called stateful testing (mostly for historical reasons - the original
implementation of this idea in Hypothesis was more closely based on
ScalaCheck’s stateful testing [https://github.com/typelevel/scalacheck/blob/main/doc/UserGuide.md#stateful-testing]
where the name is more apt).
Both of these names are somewhat misleading: You don’t really need any sort of
formal model of your code to use this, and it can be just as useful for pure APIs
that don’t involve any state as it is for stateful ones.

It’s perhaps best to not take the name of this sort of testing too seriously.
Regardless of what you call it, it is a powerful form of testing which is useful
for most non-trivial APIs.

You may not need state machines

The basic idea of stateful testing is to make Hypothesis choose actions as
well as values for your test, and state machines are a great declarative way
to do just that.

For simpler cases though, you might not need them at all - a standard test
with @given might be enough, since you can use
data() in branches or loops. In fact, that’s
how the state machine explorer works internally. For more complex workloads
though, where a higher level API comes into it’s own, keep reading!

Rule-based state machines

	
class hypothesis.stateful.RuleBasedStateMachine

	A RuleBasedStateMachine gives you a structured way to define state machines.

The idea is that a state machine carries the system under test and some supporting
data. This data can be stored in instance variables or
divided into Bundles. The state machine has a set of rules which may read data
from bundles (or just from normal strategies), push data onto
bundles, change the state of the machine, or verify properties.
At any given point a random applicable rule will be executed.

A rule is very similar to a normal @given based test in that it takes
values drawn from strategies and passes them to a user defined test function,
which may use assertions to check the system’s behavior.
The key difference is that where @given based tests must be independent,
rules can be chained together - a single test run may involve multiple rule
invocations, which may interact in various ways.

Rules can take normal strategies as arguments, but normal strategies, with
the exception of runner() and
data(), cannot take into account
the current state of the machine. This is where bundles come in.

A rule can, in place of a normal strategy, take a Bundle.
A hypothesis.stateful.Bundle is a named collection of generated values that can
be reused by other operations in the test.
They are populated with the results of rules, and may be used as arguments to
rules, allowing data to flow from one rule to another, and rules to work on
the results of previous computations or actions.

Specifically, a rule that specifies target=a_bundle will cause its return
value to be added to that bundle. A rule that specifies an_argument=a_bundle
as a strategy will draw a value from that bundle. A rule can also specify
that an argument chooses a value from a bundle and removes that value by using
consumes() as in an_argument=consumes(a_bundle).

Note

There is some overlap between what you can do with Bundles and what you can
do with instance variables. Both represent state that rules can manipulate.
If you do not need to draw values that depend on the machine’s state, you
can simply use instance variables. If you do need to draw values that depend
on the machine’s state, Bundles provide a fairly straightforward way to do
this. If you need rules that draw values that depend on the machine’s state
in some more complicated way, you will have to abandon bundles. You can use
runner() and .flatmap()
to access the instance from a rule: the strategy
runner().flatmap(lambda self: sampled_from(self.a_list))
will draw from the instance variable a_list. If you need something more
complicated still, you can use data() to
draw data from the instance (or anywhere else) based on logic in the rule.

The following rule based state machine example is a simplified version of a
test for Hypothesis’s example database implementation. An example database
maps keys to sets of values, and in this test we compare one implementation of
it to a simplified in memory model of its behaviour, which just stores the same
values in a Python dict. The test then runs operations against both the
real database and the in-memory representation of it and looks for discrepancies
in their behaviour.

import shutil
import tempfile
from collections import defaultdict

import hypothesis.strategies as st
from hypothesis.database import DirectoryBasedExampleDatabase
from hypothesis.stateful import Bundle, RuleBasedStateMachine, rule

class DatabaseComparison(RuleBasedStateMachine):
 def __init__(self):
 super().__init__()
 self.tempd = tempfile.mkdtemp()
 self.database = DirectoryBasedExampleDatabase(self.tempd)
 self.model = defaultdict(set)

 keys = Bundle("keys")
 values = Bundle("values")

 @rule(target=keys, k=st.binary())
 def add_key(self, k):
 return k

 @rule(target=values, v=st.binary())
 def add_value(self, v):
 return v

 @rule(k=keys, v=values)
 def save(self, k, v):
 self.model[k].add(v)
 self.database.save(k, v)

 @rule(k=keys, v=values)
 def delete(self, k, v):
 self.model[k].discard(v)
 self.database.delete(k, v)

 @rule(k=keys)
 def values_agree(self, k):
 assert set(self.database.fetch(k)) == self.model[k]

 def teardown(self):
 shutil.rmtree(self.tempd)

TestDBComparison = DatabaseComparison.TestCase

In this we declare two bundles - one for keys, and one for values.
We have two trivial rules which just populate them with data (k and v),
and three non-trivial rules:
save saves a value under a key and delete removes a value from a key,
in both cases also updating the model of what should be in the database.
values_agree then checks that the contents of the database agrees with the
model for a particular key.

Note

While this could have been simplified by not using bundles, generating
keys and values directly in the save and delete rules, using bundles
encourages Hypothesis to choose the same keys and values for multiple
operations. The bundle operations establish a “universe” of keys and values
that are used in the rules.

We can now integrate this into our test suite by getting a unittest TestCase
from it:

TestTrees = DatabaseComparison.TestCase

Or just run with pytest's unittest support
if __name__ == "__main__":
 unittest.main()

This test currently passes, but if we comment out the line where we call self.model[k].discard(v),
we would see the following output when run under pytest:

AssertionError: assert set() == {b''}

------------ Hypothesis ------------

state = DatabaseComparison()
var1 = state.add_key(k=b'')
var2 = state.add_value(v=var1)
state.save(k=var1, v=var2)
state.delete(k=var1, v=var2)
state.values_agree(k=var1)
state.teardown()

Note how it’s printed out a very short program that will demonstrate the
problem. The output from a rule based state machine should generally be pretty
close to Python code - if you have custom repr implementations that don’t
return valid Python then it might not be, but most of the time you should just
be able to copy and paste the code into a test to reproduce it.

You can control the detailed behaviour with a settings object on the TestCase
(this is a normal hypothesis settings object using the defaults at the time
the TestCase class was first referenced). For example if you wanted to run
fewer examples with larger programs you could change the settings to:

DatabaseComparison.TestCase.settings = settings(
 max_examples=50, stateful_step_count=100
)

Which doubles the number of steps each program runs and halves the number of
test cases that will be run.

Rules

As said earlier, rules are the most common feature used in RuleBasedStateMachine.
They are defined by applying the rule() decorator
on a function.
Note that RuleBasedStateMachine must have at least one rule defined and that
a single function cannot be used to define multiple rules (this to avoid having
multiple rules doing the same things).
Due to the stateful execution method, rules generally cannot take arguments
from other sources such as fixtures or pytest.mark.parametrize - consider
providing them via a strategy such as sampled_from()
instead.

	
hypothesis.stateful.rule(*, targets=(), target=None, **kwargs)

	Decorator for RuleBasedStateMachine. Any Bundle present in target or
targets will define where the end result of this function should go. If
both are empty then the end result will be discarded.

target must be a Bundle, or if the result should be replicated to multiple
bundles you can pass a tuple of them as the targets argument.
It is invalid to use both arguments for a single rule. If the result
should go to exactly one of several bundles, define a separate rule for
each case.

kwargs then define the arguments that will be passed to the function
invocation. If their value is a Bundle, or if it is consumes(b)
where b is a Bundle, then values that have previously been produced
for that bundle will be provided. If consumes is used, the value
will also be removed from the bundle.

Any other kwargs should be strategies and values from them will be
provided.

	
hypothesis.stateful.consumes(bundle)

	When introducing a rule in a RuleBasedStateMachine, this function can
be used to mark bundles from which each value used in a step with the
given rule should be removed. This function returns a strategy object
that can be manipulated and combined like any other.

For example, a rule declared with

@rule(value1=b1, value2=consumes(b2), value3=lists(consumes(b3)))

will consume a value from Bundle b2 and several values from Bundle
b3 to populate value2 and value3 each time it is executed.

	
hypothesis.stateful.multiple(*args)

	This function can be used to pass multiple results to the target(s) of
a rule. Just use return multiple(result1, result2, ...) in your rule.

It is also possible to use return multiple() with no arguments in
order to end a rule without passing any result.

	
class hypothesis.stateful.Bundle(name, *, consume=False)

	A collection of values for use in stateful testing.

Bundles are a kind of strategy where values can be added by rules,
and (like any strategy) used as inputs to future rules.

The name argument they are passed is the they are referred to
internally by the state machine; no two bundles may have
the same name. It is idiomatic to use the attribute
being assigned to as the name of the Bundle:

class MyStateMachine(RuleBasedStateMachine):
 keys = Bundle("keys")

Bundles can contain the same value more than once; this becomes
relevant when using consumes() to remove
values again.

If the consume argument is set to True, then all values that are
drawn from this bundle will be consumed (as above) when requested.

Initializes

Initializes are a special case of rules, which are guaranteed to be run exactly
once before any normal rule is called.
Note if multiple initialize rules are defined, they will all be called but in any order,
and that order will vary from run to run.

Initializes are typically useful to populate bundles:

	
hypothesis.stateful.initialize(*, targets=(), target=None, **kwargs)

	Decorator for RuleBasedStateMachine.

An initialize decorator behaves like a rule, but all @initialize() decorated
methods will be called before any @rule() decorated methods, in an arbitrary
order. Each @initialize() method will be called exactly once per run, unless
one raises an exception - after which only the .teardown() method will be run.
@initialize() methods may not have preconditions.

import hypothesis.strategies as st
from hypothesis.stateful import Bundle, RuleBasedStateMachine, initialize, rule

name_strategy = st.text(min_size=1).filter(lambda x: "/" not in x)

class NumberModifier(RuleBasedStateMachine):
 folders = Bundle("folders")
 files = Bundle("files")

 @initialize(target=folders)
 def init_folders(self):
 return "/"

 @rule(target=folders, name=name_strategy)
 def create_folder(self, parent, name):
 return f"{parent}/{name}"

 @rule(target=files, name=name_strategy)
 def create_file(self, parent, name):
 return f"{parent}/{name}"

Initializes can also allow you to initialize the system under test in a way that depends on
values chosen from a strategy. You could do this by putting an instance variable in the
state machine that indicates whether the system under test has been initialized or not,
and then using preconditions (below) to ensure that exactly one of the rules that
initialize it get run before any rules that depend on it being initialized.

Preconditions

While it’s possible to use assume() in RuleBasedStateMachine rules, if you
use it in only a few rules you can quickly run into a situation where few or
none of your rules pass their assumptions. Thus, Hypothesis provides a
precondition() decorator to avoid this problem. The precondition()
decorator is used on rule-decorated functions, and must be given a function
that returns True or False based on the RuleBasedStateMachine instance.

	
hypothesis.stateful.precondition(precond)

	Decorator to apply a precondition for rules in a RuleBasedStateMachine.
Specifies a precondition for a rule to be considered as a valid step in the
state machine, which is more efficient than using assume()
within the rule. The precond function will be called with the instance of
RuleBasedStateMachine and should return True or False. Usually it will need
to look at attributes on that instance.

For example:

class MyTestMachine(RuleBasedStateMachine):
 state = 1

 @precondition(lambda self: self.state != 0)
 @rule(numerator=integers())
 def divide_with(self, numerator):
 self.state = numerator / self.state

If multiple preconditions are applied to a single rule, it is only considered
a valid step when all of them return True. Preconditions may be applied to
invariants as well as rules.

from hypothesis.stateful import RuleBasedStateMachine, precondition, rule

class NumberModifier(RuleBasedStateMachine):
 num = 0

 @rule()
 def add_one(self):
 self.num += 1

 @precondition(lambda self: self.num != 0)
 @rule()
 def divide_with_one(self):
 self.num = 1 / self.num

By using precondition() here instead of assume(), Hypothesis can filter the
inapplicable rules before running them. This makes it much more likely that a
useful sequence of steps will be generated.

Note that currently preconditions can’t access bundles; if you need to use
preconditions, you should store relevant data on the instance instead.

Invariants

Often there are invariants that you want to ensure are met after every step in
a process. It would be possible to add these as rules that are run, but they
would be run zero or multiple times between other rules. Hypothesis provides a
decorator that marks a function to be run after every step.

	
hypothesis.stateful.invariant(*, check_during_init=False)

	Decorator to apply an invariant for rules in a RuleBasedStateMachine.
The decorated function will be run after every rule and can raise an
exception to indicate failed invariants.

For example:

class MyTestMachine(RuleBasedStateMachine):
 state = 1

 @invariant()
 def is_nonzero(self):
 assert self.state != 0

By default, invariants are only checked after all
@initialize() rules have been run.
Pass check_during_init=True for invariants which can also be checked
during initialization.

from hypothesis.stateful import RuleBasedStateMachine, invariant, rule

class NumberModifier(RuleBasedStateMachine):
 num = 0

 @rule()
 def add_two(self):
 self.num += 2
 if self.num > 50:
 self.num += 1

 @invariant()
 def divide_with_one(self):
 assert self.num % 2 == 0

NumberTest = NumberModifier.TestCase

Invariants can also have precondition()s applied to them, in which case
they will only be run if the precondition function returns true.

Note that currently invariants can’t access bundles; if you need to use
invariants, you should store relevant data on the instance instead.

More fine grained control

If you want to bypass the TestCase infrastructure you can invoke these
manually. The stateful module exposes the function run_state_machine_as_test,
which takes an arbitrary function returning a RuleBasedStateMachine and an
optional settings parameter and does the same as the class based runTest
provided.

This is not recommended as it bypasses some important internal functions,
including reporting of statistics such as runtimes and event()
calls. It was originally added to support custom __init__ methods, but
you can now use initialize() rules instead.

Compatibility

Hypothesis does its level best to be compatible with everything you could
possibly need it to be compatible with. Generally you should just try it and
expect it to work. If it doesn’t, you can be surprised and check this document
for the details.

Hypothesis versions

Backwards compatibility is better than backporting fixes, so we use
semantic versioning and only support the most recent
version of Hypothesis. See Help and support for more information.

Documented APIs will not break except between major version bumps.
All APIs mentioned in this documentation are public unless explicitly
noted as provisional, in which case they may be changed in minor releases.
Undocumented attributes, modules, and behaviour may include breaking
changes in patch releases.

Deprecations

Deprecated features will emit warnings for at least six
months, and then be removed in the following major release.

Note however that not all warnings are subject to this grace period;
sometimes we strengthen validation by adding a warning and these may
become errors immediately at a major release.

We use custom exception and warning types, so you can see
exactly where an error came from, or turn only our warnings into errors.

	
class hypothesis.errors.HypothesisDeprecationWarning

	A deprecation warning issued by Hypothesis.

Actually inherits from FutureWarning, because DeprecationWarning is
hidden by the default warnings filter.

You can configure the Python warnings [https://docs.python.org/3/library/warnings.html#module-warnings] to handle these
warnings differently to others, either turning them into errors or
suppressing them entirely. Obviously we would prefer the former!

Python versions

Hypothesis is supported and tested on CPython 3.8+, i.e.
all versions of CPython with upstream support [https://devguide.python.org/versions/],
along with PyPy for the same versions.
32-bit builds of CPython also work, though we only test them on Windows.

In general Hypothesis does not officially support anything except the latest
patch release of any version of Python it supports. Earlier releases should work
and bugs in them will get fixed if reported, but they’re not tested in CI and
no guarantees are made.

Operating systems

In theory Hypothesis should work anywhere that Python does. In practice it is
only known to work and regularly tested on OS X, Windows and Linux, and you may
experience issues running it elsewhere.

If you’re using something else and it doesn’t work, do get in touch and I’ll try
to help, but unless you can come up with a way for me to run a CI server on that
operating system it probably won’t stay fixed due to the inevitable march of time.

Testing frameworks

In general Hypothesis goes to quite a lot of effort to generate things that
look like normal Python test functions that behave as closely to the originals
as possible, so it should work sensibly out of the box with every test framework.

If your testing relies on doing something other than calling a function and seeing
if it raises an exception then it probably won’t work out of the box. In particular
things like tests which return generators and expect you to do something with them
(e.g. nose’s yield based tests) will not work. Use a decorator or similar to wrap the
test to take this form, or ask the framework maintainer to support our
hooks for inserting such a wrapper later.

In terms of what’s actually known to work:

	Hypothesis integrates as smoothly with pytest and unittest as we can make it,
and this is verified as part of the CI.

	pytest [https://pypi.org/project/pytest/] fixtures work in the usual way for tests that have been decorated
with @given - just avoid passing a strategy for
each argument that will be supplied by a fixture. However, each fixture
will run once for the whole function, not once per example. Decorating a
fixture function with @given is meaningless.

	The unittest.mock.patch() [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch] decorator works with
@given, but we recommend using it as a context
manager within the decorated test to ensure that the mock is per-test-case
and avoid poor interactions with Pytest fixtures.

	Nose works fine with Hypothesis, and this is tested as part of the CI. yield based
tests simply won’t work.

	Integration with Django’s testing requires use of the Hypothesis for Django users extra.
The issue is that in Django’s tests’ normal mode of execution it will reset the
database once per test rather than once per example, which is not what you want.

	Coverage [https://pypi.org/project/Coverage/] works out of the box with Hypothesis; our own test suite has
100% branch coverage.

Optional packages

The supported versions of optional packages, for strategies in hypothesis.extra,
are listed in the documentation for that extra. Our general goal is to support
all versions that are supported upstream.

Regularly verifying this

Everything mentioned above as explicitly supported is checked on every commit
with GitHub Actions [https://github.com/HypothesisWorks/hypothesis/actions].
Our continuous delivery pipeline runs all of these checks before publishing
each release, so when we say they’re supported we really mean it.

Some more examples

This is a collection of examples of how to use Hypothesis in interesting ways.
It’s small for now but will grow over time.

All of these examples are designed to be run under pytest [https://pypi.org/project/pytest/],
and nose [https://pypi.org/project/nose/] should work too.

How not to sort by a partial order

The following is an example that’s been extracted and simplified from a real
bug that occurred in an earlier version of Hypothesis. The real bug was a lot
harder to find.

Suppose we’ve got the following type:

class Node:
 def __init__(self, label, value):
 self.label = label
 self.value = tuple(value)

 def __repr__(self):
 return f"Node({self.label!r}, {self.value!r})"

 def sorts_before(self, other):
 if len(self.value) >= len(other.value):
 return False
 return other.value[: len(self.value)] == self.value

Each node is a label and a sequence of some data, and we have the relationship
sorts_before meaning the data of the left is an initial segment of the right.
So e.g. a node with value [1, 2] will sort before a node with value [1, 2, 3],
but neither of [1, 2] nor [1, 3] will sort before the other.

We have a list of nodes, and we want to topologically sort them with respect to
this ordering. That is, we want to arrange the list so that if x.sorts_before(y)
then x appears earlier in the list than y. We naively think that the easiest way
to do this is to extend the partial order defined here to a total order by
breaking ties arbitrarily and then using a normal sorting algorithm. So we
define the following code:

from functools import total_ordering

@total_ordering
class TopoKey:
 def __init__(self, node):
 self.value = node

 def __lt__(self, other):
 if self.value.sorts_before(other.value):
 return True
 if other.value.sorts_before(self.value):
 return False

 return self.value.label < other.value.label

def sort_nodes(xs):
 xs.sort(key=TopoKey)

This takes the order defined by sorts_before and extends it by breaking ties by
comparing the node labels.

But now we want to test that it works.

First we write a function to verify that our desired outcome holds:

def is_prefix_sorted(xs):
 for i in range(len(xs)):
 for j in range(i + 1, len(xs)):
 if xs[j].sorts_before(xs[i]):
 return False
 return True

This will return false if it ever finds a pair in the wrong order and
return true otherwise.

Given this function, what we want to do with Hypothesis is assert that for all
sequences of nodes, the result of calling sort_nodes on it is sorted.

First we need to define a strategy for Node:

import hypothesis.strategies as st

NodeStrategy = st.builds(Node, st.integers(), st.lists(st.booleans(), max_size=10))

We want to generate short lists of values so that there’s a decent chance of
one being a prefix of the other (this is also why the choice of bool as the
elements). We then define a strategy which builds a node out of an integer and
one of those short lists of booleans.

We can now write a test:

from hypothesis import given

@given(st.lists(NodeStrategy))
def test_sorting_nodes_is_prefix_sorted(xs):
 sort_nodes(xs)
 assert is_prefix_sorted(xs)

this immediately fails with the following example:

[Node(0, (False, True)), Node(0, (True,)), Node(0, (False,))]

The reason for this is that because False is not a prefix of (True, True) nor vice
versa, sorting things the first two nodes are equal because they have equal labels.
This makes the whole order non-transitive and produces basically nonsense results.

But this is pretty unsatisfying. It only works because they have the same label. Perhaps
we actually wanted our labels to be unique. Let’s change the test to do that.

def deduplicate_nodes_by_label(nodes):
 table = {node.label: node for node in nodes}
 return list(table.values())

We define a function to deduplicate nodes by labels, and can now map that over a strategy
for lists of nodes to give us a strategy for lists of nodes with unique labels:

@given(st.lists(NodeStrategy).map(deduplicate_nodes_by_label))
def test_sorting_nodes_is_prefix_sorted(xs):
 sort_nodes(xs)
 assert is_prefix_sorted(xs)

Hypothesis quickly gives us an example of this still being wrong:

[Node(0, (False,)), Node(-1, (True,)), Node(-2, (False, False))]

Now this is a more interesting example. None of the nodes will sort equal. What is
happening here is that the first node is strictly less than the last node because
(False,) is a prefix of (False, False). This is in turn strictly less than the middle
node because neither is a prefix of the other and -2 < -1. The middle node is then
less than the first node because -1 < 0.

So, convinced that our implementation is broken, we write a better one:

def sort_nodes(xs):
 for i in range(1, len(xs)):
 j = i - 1
 while j >= 0:
 if xs[j].sorts_before(xs[j + 1]):
 break
 xs[j], xs[j + 1] = xs[j + 1], xs[j]
 j -= 1

This is just insertion sort slightly modified - we swap a node backwards until swapping
it further would violate the order constraints. The reason this works is because our
order is a partial order already (this wouldn’t produce a valid result for a general
topological sorting - you need the transitivity).

We now run our test again and it passes, telling us that this time we’ve successfully
managed to sort some nodes without getting it completely wrong. Go us.

Time zone arithmetic

This is an example of some tests for pytz [https://pypi.org/project/pytz/] which check that various timezone
conversions behave as you would expect them to. These tests should all pass,
and are mostly a demonstration of some useful sorts of thing to test with
Hypothesis, and how the datetimes() strategy works.

from datetime import timedelta

The datetimes strategy is naive by default, so tell it to use timezones
aware_datetimes = st.datetimes(timezones=st.timezones())

@given(aware_datetimes, st.timezones(), st.timezones())
def test_convert_via_intermediary(dt, tz1, tz2):
 """Test that converting between timezones is not affected
 by a detour via another timezone.
 """
 assert dt.astimezone(tz1).astimezone(tz2) == dt.astimezone(tz2)

@given(aware_datetimes, st.timezones())
def test_convert_to_and_fro(dt, tz2):
 """If we convert to a new timezone and back to the old one
 this should leave the result unchanged.
 """
 tz1 = dt.tzinfo
 assert dt == dt.astimezone(tz2).astimezone(tz1)

@given(aware_datetimes, st.timezones())
def test_adding_an_hour_commutes(dt, tz):
 """When converting between timezones it shouldn't matter
 if we add an hour here or add an hour there.
 """
 an_hour = timedelta(hours=1)
 assert (dt + an_hour).astimezone(tz) == dt.astimezone(tz) + an_hour

@given(aware_datetimes, st.timezones())
def test_adding_a_day_commutes(dt, tz):
 """When converting between timezones it shouldn't matter
 if we add a day here or add a day there.
 """
 a_day = timedelta(days=1)
 assert (dt + a_day).astimezone(tz) == dt.astimezone(tz) + a_day

Condorcet’s paradox

A classic paradox in voting theory, called Condorcet’s paradox, is that
majority preferences are not transitive. That is, there is a population
and a set of three candidates A, B and C such that the majority of the
population prefer A to B, B to C and C to A.

Wouldn’t it be neat if we could use Hypothesis to provide an example of this?

Well as you can probably guess from the presence of this section, we can!
The main trick is to decide how we want to represent the result of an
election - for this example, we’ll use a list of “votes”, where each
vote is a list of candidates in the voters preferred order.
Without further ado, here is the code:

from collections import Counter

from hypothesis import given
from hypothesis.strategies import lists, permutations

We need at least three candidates and at least three voters to have a
paradox; anything less can only lead to victories or at worst ties.
@given(lists(permutations(["A", "B", "C"]), min_size=3))
def test_elections_are_transitive(election):
 all_candidates = {"A", "B", "C"}

 # First calculate the pairwise counts of how many prefer each candidate
 # to the other
 counts = Counter()
 for vote in election:
 for i in range(len(vote)):
 for j in range(i + 1, len(vote)):
 counts[(vote[i], vote[j])] += 1

 # Now look at which pairs of candidates one has a majority over the
 # other and store that.
 graph = {}
 for i in all_candidates:
 for j in all_candidates:
 if counts[(i, j)] > counts[(j, i)]:
 graph.setdefault(i, set()).add(j)

 # Now for each triple assert that it is transitive.
 for x in all_candidates:
 for y in graph.get(x, ()):
 for z in graph.get(y, ()):
 assert x not in graph.get(z, ())

The example Hypothesis gives me on my first run (your mileage may of course
vary) is:

[["A", "B", "C"], ["B", "C", "A"], ["C", "A", "B"]]

Which does indeed do the job: The majority (votes 0 and 1) prefer B to C, the
majority (votes 0 and 2) prefer A to B and the majority (votes 1 and 2) prefer
C to A. This is in fact basically the canonical example of the voting paradox.

Fuzzing an HTTP API

Hypothesis’s support for testing HTTP services is somewhat nascent. There are
plans for some fully featured things around this, but right now they’re
probably quite far down the line.

But you can do a lot yourself without any explicit support! Here’s a script
I wrote to throw arbitrary data against the API for an entirely fictitious service
called Waspfinder (this is only lightly obfuscated and you can easily figure
out who I’m actually talking about, but I don’t want you to run this code and
hammer their API without their permission).

All this does is use Hypothesis to generate arbitrary JSON data matching the
format their API asks for and check for 500 errors. More advanced tests which
then use the result and go on to do other things are definitely also possible.
The schemathesis [https://pypi.org/project/schemathesis/] package provides an excellent example of this!

import math
import os
import random
import time
import unittest
from collections import namedtuple

import requests

from hypothesis import assume, given, strategies as st

Goal = namedtuple("Goal", ("slug",))

We just pass in our API credentials via environment variables.
waspfinder_token = os.getenv("WASPFINDER_TOKEN")
waspfinder_user = os.getenv("WASPFINDER_USER")
assert waspfinder_token is not None
assert waspfinder_user is not None

GoalData = st.fixed_dictionaries(
 {
 "title": st.text(),
 "goal_type": st.sampled_from(
 ["hustler", "biker", "gainer", "fatloser", "inboxer", "drinker", "custom"]
),
 "goaldate": st.one_of(st.none(), st.floats()),
 "goalval": st.one_of(st.none(), st.floats()),
 "rate": st.one_of(st.none(), st.floats()),
 "initval": st.floats(),
 "panic": st.floats(),
 "secret": st.booleans(),
 "datapublic": st.booleans(),
 }
)

needs2 = ["goaldate", "goalval", "rate"]

class WaspfinderTest(unittest.TestCase):
 @given(GoalData)
 def test_create_goal_dry_run(self, data):
 # We want slug to be unique for each run so that multiple test runs
 # don't interfere with each other. If for some reason some slugs trigger
 # an error and others don't we'll get a Flaky error, but that's OK.
 slug = hex(random.getrandbits(32))[2:]

 # Use assume to guide us through validation we know about, otherwise
 # we'll spend a lot of time generating boring examples.

 # Title must not be empty
 assume(data["title"])

 # Exactly two of these values should be not None. The other will be
 # inferred by the API.

 assume(len([1 for k in needs2 if data[k] is not None]) == 2)
 for v in data.values():
 if isinstance(v, float):
 assume(not math.isnan(v))
 data["slug"] = slug

 # The API nicely supports a dry run option, which means we don't have
 # to worry about the user account being spammed with lots of fake goals
 # Otherwise we would have to make sure we cleaned up after ourselves
 # in this test.
 data["dryrun"] = True
 data["auth_token"] = waspfinder_token
 for d, v in data.items():
 if v is None:
 data[d] = "null"
 else:
 data[d] = str(v)
 result = requests.post(
 "https://waspfinder.example.com/api/v1/users/"
 "%s/goals.json" % (waspfinder_user,),
 data=data,
)

 # Let's not hammer the API too badly. This will of course make the
 # tests even slower than they otherwise would have been, but that's
 # life.
 time.sleep(1.0)

 # For the moment all we're testing is that this doesn't generate an
 # internal error. If we didn't use the dry run option we could have
 # then tried doing more with the result, but this is a good start.
 self.assertNotEqual(result.status_code, 500)

if __name__ == "__main__":
 unittest.main()

Community

The Hypothesis community is small for the moment but is full of excellent people
who can answer your questions and help you out. Please do join us.
The major place for community discussion is the mailing list [https://groups.google.com/forum/#!forum/hypothesis-users].

Feel free to use it to ask for help, provide feedback, or discuss anything remotely
Hypothesis related at all. If you post a question on Stack Overflow, please use the
python-hypothesis [https://stackoverflow.com/questions/tagged/python-hypothesis] tag!

Please note that the Hypothesis code of conduct [https://github.com/HypothesisWorks/hypothesis/blob/master/CODE_OF_CONDUCT.rst]
applies in all Hypothesis community spaces.

If you would like to cite Hypothesis, please consider our suggested citation [https://github.com/HypothesisWorks/hypothesis/blob/master/CITATION.cff].

If you like repo badges, we suggest the following badge, which you can add
with reStructuredText or Markdown, respectively:

[image: _images/9f66ae48c2d6029e185f153d79a7d1ef312ea47b.svg].. image:: https://img.shields.io/badge/hypothesis-tested-brightgreen.svg
 :alt: Tested with Hypothesis
 :target: https://hypothesis.readthedocs.io

[![Tested with Hypothesis](https://img.shields.io/badge/hypothesis-tested-brightgreen.svg)](https://hypothesis.readthedocs.io/)

Finally, we have a beautiful logo which appears online, and often on stickers:

[image: The Hypothesis logo, a dragonfly with rainbow wings]As well as being beautiful, dragonflies actively hunt down bugs for a living!
You can find the images and a usage guide in the brand [https://github.com/HypothesisWorks/hypothesis/blob/master/brand] directory on
GitHub, or find us at conferences where we often have stickers and sometimes
other swag.

The purpose of Hypothesis

What is Hypothesis for?

From the perspective of a user, the purpose of Hypothesis is to make it easier for
you to write better tests.

From my perspective as the author, that is of course also a purpose of Hypothesis,
but (if you will permit me to indulge in a touch of megalomania for a moment), the
larger purpose of Hypothesis is to drag the world kicking and screaming into a new
and terrifying age of high quality software.

Software is, as they say, eating the world. Software is also terrible [https://www.youtube.com/watch?v=csyL9EC0S0c]. It’s buggy,
insecure and generally poorly thought out. This combination is clearly a recipe for
disaster.

And the state of software testing is even worse. Although it’s fairly uncontroversial
at this point that you should be testing your code, can you really say with a straight
face that most projects you’ve worked on are adequately tested?

A lot of the problem here is that it’s too hard to write good tests. Your tests encode
exactly the same assumptions and fallacies that you had when you wrote the code, so they
miss exactly the same bugs that you missed when you wrote the code.

Meanwhile, there are all sorts of tools for making testing better that are basically
unused. The original Quickcheck is from 1999 and the majority of developers have
not even heard of it, let alone used it. There are a bunch of half-baked implementations
for most languages, but very few of them are worth using.

The goal of Hypothesis is to bring advanced testing techniques to the masses, and to
provide an implementation that is so high quality that it is easier to use them than
it is not to use them. Where I can, I will beg, borrow and steal every good idea
I can find that someone has had to make software testing better. Where I can’t, I will
invent new ones.

Quickcheck is the start, but I also plan to integrate ideas from fuzz testing (a
planned future feature is to use coverage information to drive example selection, and
the example saving database is already inspired by the workflows people use for fuzz
testing), and am open to and actively seeking out other suggestions and ideas.

The plan is to treat the social problem of people not using these ideas as a bug to
which there is a technical solution: Does property-based testing not match your workflow?
That’s a bug, let’s fix it by figuring out how to integrate Hypothesis into it.
Too hard to generate custom data for your application? That’s a bug. Let’s fix it by
figuring out how to make it easier, or how to take something you’re already using to
specify your data and derive a generator from that automatically. Find the explanations
of these advanced ideas hopelessly obtuse and hard to follow? That’s a bug. Let’s provide
you with an easy API that lets you test your code better without a PhD in software
verification.

Grand ambitions, I know, and I expect ultimately the reality will be somewhat less
grand, but so far in about three months of development, Hypothesis has become the most
solid implementation of Quickcheck ever seen in a mainstream language (as long as we don’t
count Scala as mainstream yet), and at the same time managed to
significantly push forward the state of the art, so I think there’s
reason to be optimistic.

Testimonials

This is a page for listing people who are using Hypothesis and how excited they
are about that. If that’s you and your name is not on the list,
this file is in Git [https://github.com/HypothesisWorks/hypothesis/blob/master/hypothesis-python/docs/endorsements.rst]
and I’d love it if you sent me a pull request to fix that.

Stripe [https://stripe.com]

At Stripe we use Hypothesis to test every piece of our machine
learning model training pipeline (powered by scikit). Before we
migrated, our tests were filled with hand-crafted pandas Dataframes
that weren’t representative at all of our actual very complex
data. Because we needed to craft examples for each test, we took the
easy way out and lived with extremely low test coverage.

Hypothesis changed all that. Once we had our strategies for generating
Dataframes of features it became trivial to slightly customize each
strategy for new tests. Our coverage is now close to 90%.

Full-stop, property-based testing is profoundly more powerful - and
has caught or prevented far more bugs - than our old style of
example-based testing.

Kristian Glass - Director of Technology at LaterPay GmbH [https://www.laterpay.net/]

Hypothesis has been brilliant for expanding the coverage of our test cases,
and also for making them much easier to read and understand,
so we’re sure we’re testing the things we want in the way we want.

Seth Morton [https://github.com/SethMMorton]

When I first heard about Hypothesis, I knew I had to include it in my two
open-source Python libraries, natsort [https://github.com/SethMMorton/natsort]
and fastnumbers [https://github.com/SethMMorton/fastnumbers] . Quite frankly,
I was a little appalled at the number of bugs and “holes” I found in the code. I can
now say with confidence that my libraries are more robust to “the wild.” In
addition, Hypothesis gave me the confidence to expand these libraries to fully
support Unicode input, which I never would have had the stomach for without such
thorough testing capabilities. Thanks!

Sixty North [https://sixty-north.com/]

At Sixty North we use Hypothesis for testing
Segpy [https://github.com/sixty-north/segpy] an open source Python library for
shifting data between Python data structures and SEG Y files which contain
geophysical data from the seismic reflection surveys used in oil and gas
exploration.

This is our first experience of property-based testing – as opposed to example-based
testing. Not only are our tests more powerful, they are also much better
explanations of what we expect of the production code. In fact, the tests are much
closer to being specifications. Hypothesis has located real defects in our code
which went undetected by traditional test cases, simply because Hypothesis is more
relentlessly devious about test case generation than us mere humans! We found
Hypothesis particularly beneficial for Segpy because SEG Y is an antiquated format
that uses legacy text encodings (EBCDIC) and even a legacy floating point format
we implemented from scratch in Python.

Hypothesis is sure to find a place in most of our future Python codebases and many
existing ones too.

mulkieran [https://github.com/mulkieran]

Just found out about this excellent QuickCheck for Python implementation and
ran up a few tests for my bytesize [https://github.com/mulkieran/bytesize]
package last night. Refuted a few hypotheses in the process.

Looking forward to using it with a bunch of other projects as well.

Adam Johnson [https://github.com/adamchainz]

I have written a small library to serialize dicts to MariaDB’s dynamic
columns binary format,
mariadb-dyncol [https://github.com/adamchainz/mariadb-dyncol]. When I first
developed it, I thought I had tested it really well - there were hundreds of
test cases, some of them even taken from MariaDB’s test suite itself. I was
ready to release.

Lucky for me, I tried Hypothesis with David at the PyCon UK sprints. Wow! It
found bug after bug after bug. Even after a first release, I thought of a way
to make the tests do more validation, which revealed a further round of bugs!
Most impressively, Hypothesis found a complicated off-by-one error in a
condition with 4095 versus 4096 bytes of data - something that I would never
have found.

Long live Hypothesis! (Or at least, property-based testing).

Josh Bronson [https://github.com/jab]

Adopting Hypothesis improved bidict [https://github.com/jab/bidict]’s
test coverage and significantly increased our ability to make changes to
the code with confidence that correct behavior would be preserved.
Thank you, David, for the great testing tool.

Cory Benfield [https://github.com/Lukasa]

Hypothesis is the single most powerful tool in my toolbox for working with
algorithmic code, or any software that produces predictable output from a wide
range of sources. When using it with
Priority [https://python-hyper.org/projects/priority/en/latest/], Hypothesis consistently found
errors in my assumptions and extremely subtle bugs that would have taken months
of real-world use to locate. In some cases, Hypothesis found subtle deviations
from the correct output of the algorithm that may never have been noticed at
all.

When it comes to validating the correctness of your tools, nothing comes close
to the thoroughness and power of Hypothesis.

Jon Moore [https://github.com/jonmoore]

One extremely satisfied user here. Hypothesis is a really solid implementation
of property-based testing, adapted well to Python, and with good features
such as failure-case shrinkers. I first used it on a project where we needed
to verify that a vendor’s Python and non-Python implementations of an algorithm
matched, and it found about a dozen cases that previous example-based testing
and code inspections had not. Since then I’ve been evangelizing for it at our firm.

Russel Winder [https://www.russel.org.uk]

I am using Hypothesis as an integral part of my Python workshops. Testing is an integral part of Python
programming and whilst unittest and, better, pytest can handle example-based testing, property-based
testing is increasingly far more important than example-base testing, and Hypothesis fits the bill.

Wellfire Interactive [https://wellfire.co]

We’ve been using Hypothesis in a variety of client projects, from testing
Django-related functionality to domain-specific calculations. It both speeds
up and simplifies the testing process since there’s so much less tedious and
error-prone work to do in identifying edge cases. Test coverage is nice but
test depth is even nicer, and it’s much easier to get meaningful test depth
using Hypothesis.

Cody Kochmann [https://github.com/CodyKochmann]

Hypothesis is being used as the engine for random object generation with my
open source function fuzzer
battle_tested [https://github.com/CodyKochmann/battle_tested]
which maps all behaviors of a function allowing you to minimize the chance of
unexpected crashes when running code in production.

With how efficient Hypothesis is at generating the edge cases that cause
unexpected behavior occur,
battle_tested [https://github.com/CodyKochmann/battle_tested]
is able to map out the entire behavior of most functions in less than a few
seconds.

Hypothesis truly is a masterpiece. I can’t thank you enough for building it.

Merchise Autrement [https://github.com/merchise]

Just minutes after our first use of hypothesis we uncovered a subtle bug [https://github.com/merchise/xoutil/commit/0a4a0f529812fed363efb653f3ade2d2bc203945]
in one of our most used library. Since then, we have increasingly used
hypothesis to improve the quality of our testing in libraries and applications
as well.

Florian Kromer [https://github.com/fkromer]

At Roboception GmbH [https://roboception.com/en/] I use Hypothesis to
implement fully automated stateless and stateful reliability tests for the
3D sensor rc_visard [https://roboception.com/en/rc_visard-en/] and
robotic software components [https://roboception.com/en/rc_reason-en/] .

Thank you very much for creating the (probably) most powerful property-based
testing framework.

Reposit Power [https://repositpower.com]

With a micro-service architecture, testing between services is made easy using Hypothesis
in integration testing. Ensuring everything is running smoothly is vital to help maintain
a secure network of Virtual Power Plants.

It allows us to find potential bugs and edge cases with relative ease
and minimal overhead. As our architecture relies on services communicating effectively, Hypothesis
allows us to strictly test for the kind of data which moves around our services, particularly
our backend Python applications.

Your name goes here [http://example.com]

I know there are many more, because I keep finding out about new people I’d never
even heard of using Hypothesis. If you’re looking to way to give back to a tool you
love, adding your name here only takes a moment and would really help a lot. As per
instructions at the top, just send me a pull request and I’ll add you to the list.

Open source projects using Hypothesis

The following is a non-exhaustive list of open source projects I know are
using Hypothesis. If you’re aware of any others please add them to the list!
The only inclusion criterion right now is that if it’s a Python library
then it should be available on PyPI.

You can find hundreds more from the Hypothesis page at libraries.io [https://libraries.io/pypi/hypothesis], and thousands on GitHub [https://github.com/HypothesisWorks/hypothesis/blob/master/network/dependents].
Hypothesis has over 100,000 downloads per week [https://pypistats.org/packages/hypothesis],
and was used by more than 4% of Python users surveyed by the PSF in 2020 [https://www.jetbrains.com/lp/python-developers-survey-2020/].

	aur [https://github.com/cdown/aur]

	argon2_cffi [https://github.com/hynek/argon2-cffi]

	array-api-tests [https://github.com/data-apis/array-api-tests]

	attrs [https://github.com/python-attrs/attrs]

	axelrod [https://github.com/Axelrod-Python/Axelrod]

	bidict [https://github.com/jab/bidict]

	binaryornot [https://github.com/audreyfeldroy/binaryornot]

	brotlicffi [https://github.com/python-hyper/brotlicffi]

	chardet [https://pypi.org/project/chardet/]

	cmph-cffi [https://pypi.org/project/cmph-cffi/]

	cryptography [https://github.com/pyca/cryptography]

	dbus-signature-pyparsing [https://github.com/stratis-storage/dbus-signature-pyparsing]

	dry-python/returns [https://github.com/dry-python/returns]

	fastnumbers [https://github.com/SethMMorton/fastnumbers]

	flocker [https://github.com/ClusterHQ/flocker]

	flownetpy [https://github.com/debsankha/flownetpy]

	funsize [https://github.com/mozilla-releng/funsize]

	fusion-index [https://github.com/fusionapp/fusion-index]

	hyper-h2 [https://github.com/python-hyper/h2]

	into-dbus-python [https://github.com/stratis-storage/into-dbus-python]

	ivy [https://github.com/unifyai/ivy]

	justbases [https://github.com/mulkieran/justbases]

	justbytes [https://github.com/mulkieran/justbytes]

	loris [https://github.com/loris-imageserver/loris]

	mariadb-dyncol [https://github.com/adamchainz/mariadb-dyncol]

	MDAnalysis [https://github.com/MDAnalysis/mdanalysis]

	mercurial [https://www.mercurial-scm.org/]

	napari [https://github.com/napari/napari]

	natsort [https://github.com/SethMMorton/natsort]

	numpy [https://github.com/numpy/numpy]

	pandas [https://github.com/pandas-dev/pandas]

	pandera [https://github.com/unionai-oss/pandera]

	poliastro [https://github.com/poliastro/poliastro]

	pretext [https://github.com/moreati/b-prefix-all-the-doctests]

	priority [https://github.com/python-hyper/priority]

	PyCEbox [https://github.com/AustinRochford/PyCEbox]

	PyPy [https://www.pypy.org/]

	pyrsistent [https://github.com/tobgu/pyrsistent]

	python-humble-utils [https://github.com/webyneter/python-humble-utils]

	pyudev [https://github.com/pyudev/pyudev]

	qutebrowser [https://github.com/qutebrowser/qutebrowser]

	RubyMarshal [https://github.com/d9pouces/RubyMarshal]

	Segpy [https://github.com/sixty-north/segpy]

	sgkit [https://github.com/pystatgen/sgkit]

	simoa [https://github.com/andsor/pysimoa]

	srt [https://github.com/cdown/srt]

	tchannel [https://github.com/uber/tchannel-python]

	vdirsyncer [https://github.com/pimutils/vdirsyncer]

	wcag-contrast-ratio [https://github.com/gsnedders/wcag-contrast-ratio]

	xarray [https://github.com/pydata/xarray]

	yacluster [https://github.com/KrzysiekJ/yacluster]

	yturl [https://github.com/cdown/yturl]

	zenml [https://github.com/zenml-io/zenml]

Projects extending Hypothesis

Hypothesis has been eagerly used and extended by the open source community.
This page lists extensions and applications; you can find more or newer
packages by searching PyPI by keyword [https://pypi.org/search/?q=hypothesis]
or filter by classifier [https://pypi.org/search/?c=Framework+%3A%3A+Hypothesis],
or search libraries.io [https://libraries.io/search?languages=Python&q=hypothesis].

If there’s something missing which you think should be here, let us know!

Note

Being listed on this page does not imply that the Hypothesis
maintainers endorse a package.

External strategies

Some packages provide strategies directly:

	hypothesis-fspaths [https://pypi.org/project/hypothesis-fspaths/] - strategy to generate filesystem paths.

	hypothesis-geojson [https://pypi.org/project/hypothesis-geojson/] - strategy to generate GeoJson [https://geojson.org/].

	hypothesis-geometry [https://pypi.org/project/hypothesis-geometry/] - strategies to generate geometric objects.

	hs-dbus-signature [https://pypi.org/project/hs-dbus-signature/] - strategy to generate arbitrary
D-Bus signatures [https://dbus.freedesktop.org].

	hypothesis-sqlalchemy [https://pypi.org/project/hypothesis-sqlalchemy/] - strategies to generate SQLAlchemy [https://pypi.org/project/SQLAlchemy/] objects.

	hypothesis-ros [https://pypi.org/project/hypothesis-ros/] - strategies to generate messages and parameters for the Robot Operating System [https://www.ros.org/].

	hypothesis-csv [https://pypi.org/project/hypothesis-csv/] - strategy to generate CSV files.

	hypothesis-networkx [https://pypi.org/project/hypothesis-networkx/] - strategy to generate networkx [https://pypi.org/project/networkx/] graphs.

	hypothesis-bio [https://pypi.org/project/hypothesis-bio/] - strategies for bioinformatics data, such as DNA, codons, FASTA, and FASTQ formats.

	hypothesis-rdkit [https://pypi.org/project/hypothesis-rdkit/] - strategies to generate RDKit molecules and representations such as SMILES and mol blocks

	hypothesmith [https://pypi.org/project/hypothesmith/] - strategy to generate syntatically-valid Python code.

Others provide a function to infer a strategy from some other schema:

	hypothesis-jsonschema [https://pypi.org/project/hypothesis-jsonschema/] - infer strategies from JSON schemas [https://json-schema.org/].

	lollipop-hypothesis [https://pypi.org/project/lollipop-hypothesis/] - infer strategies from lollipop [https://pypi.org/project/lollipop/] schemas.

	hypothesis-drf [https://pypi.org/project/hypothesis-drf/] - infer strategies from a djangorestframework [https://pypi.org/project/djangorestframework/] serialiser.

	hypothesis-graphql [https://pypi.org/project/hypothesis-graphql/] - infer strategies from GraphQL schemas [https://graphql.org/].

	hypothesis-mongoengine [https://pypi.org/project/hypothesis-mongoengine/] - infer strategies from a mongoengine [https://pypi.org/project/mongoengine/] model.

	hypothesis-pb [https://pypi.org/project/hypothesis-pb/] - infer strategies from Protocol Buffer [https://developers.google.com/protocol-buffers/] schemas.

Or some other custom integration, such as a “hypothesis” entry point:

	deal [https://pypi.org/project/deal/] is a design-by-contract library with built-in Hypothesis support.

	icontract-hypothesis [https://pypi.org/project/icontract-hypothesis/] infers strategies from icontract [https://pypi.org/project/icontract/] code contracts.

	Pandera [https://pypi.org/project/Pandera/] schemas all have a .strategy() method, which returns a strategy for
matching DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]s.

	Pydantic [https://pypi.org/project/Pydantic/] automatically registers constrained types - so
builds() and from_type()
“just work” regardless of the underlying implementation.

Other cool things

Tyche [https://marketplace.visualstudio.com/items?itemName=HarrisonGoldstein.tyche]
(source [https://github.com/tyche-pbt]) is a VSCode extension which provides live
insights into your property-based tests, including the distribution of generated inputs
and the resulting code coverage. You can read the research paper here [https://harrisongoldste.in/papers/uist23.pdf].

schemathesis [https://pypi.org/project/schemathesis/] is a tool for testing web applications built with Open API / Swagger specifications [https://swagger.io/].
It reads the schema and generates test cases which will ensure that the application is compliant with its schema.
The application under test could be written in any language, the only thing you need is a valid API schema in a supported format.
Includes CLI and convenient pytest [https://pypi.org/project/pytest/] integration.
Powered by Hypothesis and hypothesis-jsonschema [https://pypi.org/project/hypothesis-jsonschema/], inspired by the earlier swagger-conformance [https://pypi.org/project/swagger-conformance/] library.

Trio [https://trio.readthedocs.io/] is an async framework with “an obsessive
focus on usability and correctness”, so naturally it works with Hypothesis!
pytest-trio [https://pypi.org/project/pytest-trio/] includes a custom hook
that allows @given(...) to work with Trio-style async test functions, and
hypothesis-trio [https://pypi.org/project/hypothesis-trio/] includes stateful testing extensions to support
concurrent programs.

pymtl3 [https://pypi.org/project/pymtl3/] is “an open-source Python-based hardware generation, simulation,
and verification framework with multi-level hardware modeling support”, which
ships with Hypothesis integrations to check that all of those levels are
equivalent, from function-level to register-transfer level and even to hardware.

libarchimedes [https://pypi.org/project/libarchimedes/] makes it easy to use Hypothesis in
the Hy language [https://github.com/hylang/hy], a Lisp embedded in Python.

battle_tested [https://pypi.org/project/battle_tested/] is a fuzzing tool that will show you how your code can
fail - by trying all kinds of inputs and reporting whatever happens.

pytest-subtesthack [https://pypi.org/project/pytest-subtesthack/] functions as a workaround for issue #377 [https://github.com/HypothesisWorks/hypothesis/issues/377].

returns [https://pypi.org/project/returns/] uses Hypothesis to verify that Higher Kinded Types correctly
implement functor, applicative, monad, and other laws; allowing a declarative
approach to be combined with traditional pythonic code.

icontract-hypothesis [https://pypi.org/project/icontract-hypothesis/] includes a ghostwriter for test files
and IDE integrations such as icontract-hypothesis-vim [https://github.com/mristin/icontract-hypothesis-vim],
icontract-hypothesis-pycharm [https://github.com/mristin/icontract-hypothesis-pycharm],
and
icontract-hypothesis-vscode [https://github.com/mristin/icontract-hypothesis-vscode] -
you can run a quick ‘smoke test’ with only a few keystrokes for any type-annotated
function, even if it doesn’t have any contracts!

Writing an extension

See CONTRIBUTING.rst [https://github.com/HypothesisWorks/hypothesis/blob/master/CONTRIBUTING.rst] for more information.

New strategies can be added to Hypothesis, or published as an external package
on PyPI - either is fine for most strategies. If in doubt, ask!

It’s generally much easier to get things working outside, because there’s more
freedom to experiment and fewer requirements in stability and API style. We’re
happy to review and help with external packages as well as pull requests!

If you’re thinking about writing an extension, please name it
hypothesis-{something} - a standard prefix makes the community more
visible and searching for extensions easier. And make sure you use the
Framework :: Hypothesis trove classifier!

On the other hand, being inside gets you access to some deeper implementation
features (if you need them) and better long-term guarantees about maintenance.
We particularly encourage pull requests for new composable primitives that
make implementing other strategies easier, or for widely used types in the
standard library. Strategies for other things are also welcome; anything with
external dependencies just goes in hypothesis.extra.

Tools such as assertion helpers may also need to check whether the current
test is using Hypothesis:

	
hypothesis.currently_in_test_context()

	Return True if the calling code is currently running inside an
@given or stateful test,
False otherwise.

This is useful for third-party integrations and assertion helpers which
may be called from traditional or property-based tests, but can only use
assume() or target() in the latter case.

Hypothesis integration via setuptools entry points

If you would like to ship Hypothesis strategies for a custom type - either as
part of the upstream library, or as a third-party extension, there’s a catch:
from_type() only works after the corresponding
call to register_type_strategy(), and you’ll have
the same problem with register_random(). This means that
either

	you have to try importing Hypothesis to register the strategy when your
library is imported, though that’s only useful at test time, or

	the user has to call a ‘register the strategies’ helper that you provide
before running their tests

Entry points [https://amir.rachum.com/blog/2017/07/28/python-entry-points/]
are Python’s standard way of automating the latter: when you register a
"hypothesis" entry point in your setup.py, we’ll import and run it
automatically when hypothesis is imported. Nothing happens unless Hypothesis
is already in use, and it’s totally seamless for downstream users!

Let’s look at an example. You start by adding a function somewhere in your
package that does all the Hypothesis-related setup work:

mymodule.py

class MyCustomType:
 def __init__(self, x: int):
 assert x >= 0, f"got {x}, but only positive numbers are allowed"
 self.x = x

def _hypothesis_setup_hook():
 import hypothesis.strategies as st

 st.register_type_strategy(MyCustomType, st.integers(min_value=0))

and then tell setuptools that this is your "hypothesis" entry point:

setup.py

You can list a module to import by dotted name
entry_points = {"hypothesis": ["_ = mymodule.a_submodule"]}

Or name a specific function too, and Hypothesis will call it for you
entry_points = {"hypothesis": ["_ = mymodule:_hypothesis_setup_hook"]}

And that’s all it takes!

	
HYPOTHESIS_NO_PLUGINS

	If set, disables automatic loading of all hypothesis plugins. This is probably only
useful for our own self-tests, but documented in case it might help narrow down
any particularly weird bugs in complex environments.

Interaction with pytest-cov [https://pypi.org/project/pytest-cov/]

Because pytest does not load plugins from entrypoints in any particular order,
using the Hypothesis entrypoint may import your module before pytest-cov [https://pypi.org/project/pytest-cov/]
starts. This is a known issue [https://github.com/pytest-dev/pytest/issues/935],
but there are workarounds.

You can use coverage run pytest ... instead of pytest --cov ...,
opting out of the pytest plugin entirely. Alternatively, you can ensure that Hypothesis
is loaded after coverage measurement is started by disabling the entrypoint, and
loading our pytest plugin from your conftest.py instead:

echo "pytest_plugins = ['hypothesis.extra.pytestplugin']\n" > tests/conftest.py
pytest -p "no:hypothesispytest" ...

Alternative backends for Hypothesis

Warning

EXPERIMENTAL AND UNSTABLE.

The importable name of a backend which Hypothesis should use to generate primitive
types. We aim to support heuristic-random, solver-based, and fuzzing-based backends.

See issue #3086 [https://github.com/HypothesisWorks/hypothesis/issues/3086] for details, e.g. if you’re interested in writing your own backend.
(note that there is no stable interface for this; you’d be helping us work out
what that should eventually look like, and we’re likely to make regular breaking
changes for some time to come)

Using the prototype crosshair-tool [https://pypi.org/project/crosshair-tool/] backend via hypothesis-crosshair [https://pypi.org/project/hypothesis-crosshair/],
a solver-backed test might look something like:

from hypothesis import given, settings, strategies as st

@settings(backend="crosshair") # pip install hypothesis[crosshair]
@given(st.integers())
def test_needs_solver(x):
 assert x != 123456789

Changelog

This is a record of all past Hypothesis releases and what went into them,
in reverse chronological order. All previous releases should still be available
on PyPI [https://pypi.org/project/hypothesis/].

Hypothesis 6.x

6.100.7 - 2024-05-12

This patch fixes a rare internal error when using integers() with a high max_examples setting (issue #3974 [https://github.com/HypothesisWorks/hypothesis/issues/3974]).

6.100.6 - 2024-05-10

This patch improves our internal caching logic. We don’t expect it to result in any performance improvements (yet!).

6.100.5 - 2024-05-06

This patch turns off a check in register_random() for possibly
unreferenced RNG instances on the free-threaded build of CPython 3.13 because
this check has a much higher false positive rate in the free-threaded build
(issue #3965 [https://github.com/HypothesisWorks/hypothesis/issues/3965]).

Thanks to Nathan Goldbaum for this patch.

6.100.4 - 2024-05-05

This patch turns off a warning for functions decorated with
typing.overload() [https://docs.python.org/3/library/typing.html#typing.overload] and then composite(),
although only in that order (issue #3970 [https://github.com/HypothesisWorks/hypothesis/issues/3970]).

6.100.3 - 2024-05-04

This patch fixes a significant slowdown when using the precondition() decorator in some cases, due to expensive repr formatting internally (issue #3963 [https://github.com/HypothesisWorks/hypothesis/issues/3963]).

6.100.2 - 2024-04-28

Explicitly cast numpy.finfo.smallest_normal [https://numpy.org/doc/stable/reference/generated/numpy.finfo.smallest_normal.html#numpy.finfo.smallest_normal] to builtin float [https://docs.python.org/3/library/functions.html#float] in
preparation for the numpy==2.0 [https://pypi.org/project/numpy/] release (issue #3950 [https://github.com/HypothesisWorks/hypothesis/issues/3950])

6.100.1 - 2024-04-08

This patch improve a rare error message for flaky tests (issue #3940 [https://github.com/HypothesisWorks/hypothesis/issues/3940]).

6.100.0 - 2024-03-31

The from_dtype() function no longer generates
NaT (“not-a-time”) values for the datetime64 or timedelta64 dtypes
if passed allow_nan=False (issue #3943 [https://github.com/HypothesisWorks/hypothesis/issues/3943]).

6.99.13 - 2024-03-24

This patch includes the backend setting in the
how_generated field of our observability output.

6.99.12 - 2024-03-23

If you were running Python 3.13 (currently in alpha) with pytest-xdist [https://pypi.org/project/pytest-xdist/]
and then attempted to pretty-print a lambda functions which was created
using the eval() [https://docs.python.org/3/library/functions.html#eval] builtin, it would have raised an AssertionError.
Now you’ll get "lambda ...: <unknown>", as expected.

6.99.11 - 2024-03-20

This release improves an internal invariant.

6.99.10 - 2024-03-20

This patch fixes Hypothesis sometimes raising a Flaky error when generating collections of unique floats containing nan. See issue #3926 [https://github.com/HypothesisWorks/hypothesis/issues/3926] for more details.

6.99.9 - 2024-03-19

This patch continues our work on refactoring the shrinker (issue #3921 [https://github.com/HypothesisWorks/hypothesis/issues/3921]).

6.99.8 - 2024-03-18

This patch continues our work on refactoring shrinker internals (issue #3921 [https://github.com/HypothesisWorks/hypothesis/issues/3921]).

6.99.7 - 2024-03-18

This release resolves PermissionError [https://docs.python.org/3/library/exceptions.html#PermissionError] that come from
creating databases on inaccessible paths.

6.99.6 - 2024-03-14

This patch starts work on refactoring our shrinker internals. There is no user-visible change.

6.99.5 - 2024-03-12

This patch fixes a longstanding performance problem in stateful testing (issue #3618 [https://github.com/HypothesisWorks/hypothesis/issues/3618]),
where state machines which generated a substantial amount of input for each step would
hit the maximum amount of entropy and then fail with an Unsatisfiable error.

We now stop taking additional steps when we’re approaching the entropy limit,
which neatly resolves the problem without touching unaffected tests.

6.99.4 - 2024-03-11

Fix regression caused by using PEP 696 [https://peps.python.org/pep-0696/] default in TypeVar with Python 3.13.0a3.

6.99.3 - 2024-03-11

This patch further improves the type annotations in hypothesis.extra.numpy.

6.99.2 - 2024-03-10

Simplify the type annotation of column() and
columns() by using PEP 696 [https://peps.python.org/pep-0696/] to avoid overloading.

6.99.1 - 2024-03-10

This patch implements type annotations for column().

6.99.0 - 2024-03-09

This release adds the experimental and unstable backend
setting. See Alternative backends for Hypothesis for details.

6.98.18 - 2024-03-09

This patch fixes issue #3900 [https://github.com/HypothesisWorks/hypothesis/issues/3900], a performance regression for
arrays() due to the interaction of
6.98.12 - 2024-02-25 and 6.97.1 - 2024-01-27.

6.98.17 - 2024-03-04

This patch improves the type annotations in hypothesis.extra.numpy,
which makes inferred types more precise for both mypy [https://pypi.org/project/mypy/] and
pyright [https://pypi.org/project/pyright/], and fixes some strict-mode errors on the latter.

Thanks to Jonathan Plasse for reporting and fixing this in pull request #3889 [https://github.com/HypothesisWorks/hypothesis/pull/3889]!

6.98.16 - 2024-03-04

This patch paves the way for future shrinker improvements. There is no user-visible change.

6.98.15 - 2024-02-29

This release adds support for the Array API’s 2023.12 release [https://data-apis.org/array-api/2023.12/] via the api_version argument in
make_strategies_namespace(). The API additions
and modifications in the 2023.12 spec do not necessitate any changes in the
Hypothesis strategies, hence there is no distinction between a 2022.12 and
2023.12 strategies namespace.

6.98.14 - 2024-02-29

This patch adjusts the printing of bundle values to correspond
with their names when using stateful testing.

6.98.13 - 2024-02-27

This patch implements filter-rewriting for text()
and binary() with the search() [https://docs.python.org/3/library/re.html#re.Pattern.search],
match() [https://docs.python.org/3/library/re.html#re.Pattern.match], or fullmatch() [https://docs.python.org/3/library/re.html#re.Pattern.fullmatch] method of a
re.compile() [https://docs.python.org/3/library/re.html#re.compile]d regex.

6.98.12 - 2024-02-25

This patch implements filter-rewriting for most length filters on some
additional collection types (issue #3795 [https://github.com/HypothesisWorks/hypothesis/issues/3795]), and fixes several latent
bugs where unsatisfiable or partially-infeasible rewrites could trigger
internal errors.

6.98.11 - 2024-02-24

This patch makes stateful testing somewhat less likely to get stuck
when there are only a few possible rules.

6.98.10 - 2024-02-22

This patch adds a note [https://peps.python.org/pep-0678/] to errors which occur while drawing from
a strategy, to make it easier to tell why your test failed in such cases.

6.98.9 - 2024-02-20

This patch ensures that observability outputs include
an informative repr for RuleBasedStateMachine
stateful tests, along with more detailed timing information.

6.98.8 - 2024-02-18

This patch improves the Ghostwriter for binary operators.

6.98.7 - 2024-02-18

This patch improves import-detection in the Ghostwriter
(issue #3884 [https://github.com/HypothesisWorks/hypothesis/issues/3884]), particularly for from_type()
and strategies from hypothesis.extra.*.

6.98.6 - 2024-02-15

This patch clarifies the documentation on stateful testing (issue #3511 [https://github.com/HypothesisWorks/hypothesis/issues/3511]).

6.98.5 - 2024-02-14

This patch improves argument-to-json conversion for observability
output. Checking for a .to_json() method on the object before a few other
options like dataclass support allows better user control of the process (issue #3880 [https://github.com/HypothesisWorks/hypothesis/issues/3880]).

6.98.4 - 2024-02-12

This patch updates our vendored list of top-level domains [https://www.iana.org/domains/root/db],
which is used by the provisional domains() strategy.

6.98.3 - 2024-02-08

This patch fixes an error when generating observability reports involving large (n > 1e308) integers.

6.98.2 - 2024-02-05

This patch refactors some internals. There is no user-visible change.

6.98.1 - 2024-02-05

This release improves our distribution of generated values for all strategies, by doing a better job of tracking which values we have generated before and avoiding generating them again.

For example, st.lists(st.integers()) previously generated ~5 each of [] [0] in 100 examples. In this release, each of [] and [0] are generated ~1-2 times each.

6.98.0 - 2024-02-05

This release deprecates use of the global random number generator while drawing
from a strategy, because this makes test cases less diverse and prevents us
from reporting minimal counterexamples (issue #3810 [https://github.com/HypothesisWorks/hypothesis/issues/3810]).

If you see this new warning, you can get a quick fix by using
randoms(); or use more idiomatic strategies
sampled_from(), floats(),
integers(), and so on.

Note that the same problem applies to e.g. numpy.random, but
for performance reasons we only check the stdlib random [https://docs.python.org/3/library/random.html#module-random] module -
ignoring even other sources passed to register_random().

6.97.6 - 2024-02-04

This patch updates our vendored list of top-level domains [https://www.iana.org/domains/root/db],
which is used by the provisional domains() strategy.

6.97.5 - 2024-02-03

This patch adds some observability information
about how many times predicates in assume() or
precondition() were satisfied, so that
downstream tools can warn you if some were never satisfied by
any test case.

6.97.4 - 2024-01-31

This patch improves formatting and adds some cross-references to our docs.

6.97.3 - 2024-01-30

Internal test refactoring.

6.97.2 - 2024-01-30

This patch slightly changes how we replay examples from
the database: if the behavior of the saved example has
changed, we now keep running the test case instead of aborting at the size
of the saved example. While we know it’s not the same example, we might
as well continue running the test!

Because we now finish running a few more examples for affected tests, this
might be a slight slowdown - but correspondingly more likely to find a bug.

We’ve also applied similar tricks to the target phase, where
they are a pure performance improvement for affected tests.

6.97.1 - 2024-01-27

Improves the performance of the arrays()
strategy when generating unique values.

6.97.0 - 2024-01-25

Changes the distribution of sampled_from() when
sampling from a Flag [https://docs.python.org/3/library/enum.html#enum.Flag]. Previously, no-flags-set values would
never be generated, and all-flags-set values would be unlikely for large enums.
With this change, the distribution is more uniform in the number of flags set.

6.96.4 - 2024-01-23

This patch slightly refactors some internals. There is no user-visible change.

6.96.3 - 2024-01-22

This patch fixes a spurious warning about slow imports when HYPOTHESIS_EXPERIMENTAL_OBSERVABILITY was set.

6.96.2 - 2024-01-21

This patch refactors some more internals, continuing our work on supporting alternative backends (issue #3086 [https://github.com/HypothesisWorks/hypothesis/issues/3086]). There is no user-visible change.

6.96.1 - 2024-01-18

Fix a spurious warning seen when running pytest’s test
suite, caused by never realizing we got out of
initialization due to imbalanced hook calls.

6.96.0 - 2024-01-17

Warns when constructing a repr [https://docs.python.org/3/library/functions.html#repr] that is overly long. This can
happen by accident if stringifying arbitrary strategies, and
is expensive in time and memory. The associated deferring of
these long strings in sampled_from()
should also lead to improved performance.

6.95.0 - 2024-01-17

This release adds the ability to pass any object to note(), instead of just strings. The pretty-printed representation of the object will be used.

See also issue #3843 [https://github.com/HypothesisWorks/hypothesis/issues/3843].

6.94.0 - 2024-01-16

This release avoids creating a .hypothesis directory when using
register_type_strategy() (issue #3836 [https://github.com/HypothesisWorks/hypothesis/issues/3836]),
and adds warnings for plugins which do so by other means or have
other unintended side-effects.

6.93.2 - 2024-01-15

This patch improves observability reports by moving
timing information from metadata to a new timing key, and supporting
conversion of additional argument types to json rather than string reprs
via a .to_json() method (including e.g. Pandas dataframes).

Additionally, the too_slow health check will
now report which strategies were slow, e.g. for strategies a, b, c, …:

 count | fraction | slowest draws (seconds)
a | 3 | 65% | -- -- -- 0.357, 2.000
b | 8 | 16% | 0.100, 0.100, 0.100, 0.111, 0.123
c | 3 | 8% | -- -- 0.030, 0.050, 0.200
(skipped 2 rows of fast draws)

6.93.1 - 2024-01-15

This patch refactors some internals, continuing our work on supporting alternative backends
(issue #3086 [https://github.com/HypothesisWorks/hypothesis/issues/3086]). There is no user-visible change.

6.93.0 - 2024-01-13

The from_lark() strategy now accepts an alphabet=
argument, which is passed through to from_regex(),
so that you can e.g. constrain the generated strings to a particular codec.

In support of this feature, from_regex() will avoid
generating optional parts which do not fit the alphabet. For example,
from_regex(r"abc|def", alphabet="abcd") was previously an error, and will now
generate only 'abc'. Cases where there are no valid strings remain an error.

6.92.9 - 2024-01-12

This patch refactors some internals, continuing our work on supporting alternative backends (issue #3086 [https://github.com/HypothesisWorks/hypothesis/issues/3086]). There is no user-visible change.

6.92.8 - 2024-01-11

This patch adds a test statistics event when a generated example is rejected via assume.

This may also help with distinguishing gave_up examples in observability (issue #3827 [https://github.com/HypothesisWorks/hypothesis/issues/3827]).

6.92.7 - 2024-01-10

This introduces the rewriting of length filters on some collection strategies (issue #3791 [https://github.com/HypothesisWorks/hypothesis/issues/3791]).

Thanks to Reagan Lee for implementing this feature!

6.92.6 - 2024-01-08

If a test uses sampled_from() on a sequence of
strategies, and raises a TypeError, we now add a note [https://peps.python.org/pep-0678/] asking
whether you meant to use one_of().

Thanks to Vince Reuter for suggesting and implementing this hint!

6.92.5 - 2024-01-08

This patch registers explicit strategies for a handful of builtin types,
motivated by improved introspection in PyPy 7.3.14 triggering existing
internal warnings.
Thanks to Carl Friedrich Bolz-Tereick for helping us work out what changed!

6.92.4 - 2024-01-08

This patch fixes an error when writing observability reports without a pre-existing .hypothesis directory.

6.92.3 - 2024-01-08

This patch adds a new environment variable HYPOTHESIS_EXPERIMENTAL_OBSERVABILITY_NOCOVER,
which turns on observability data collection without collecting
code coverage data, which may be faster on Python 3.11 and earlier.

Thanks to Harrison Goldstein for reporting and fixing issue #3821 [https://github.com/HypothesisWorks/hypothesis/issues/3821].

6.92.2 - 2023-12-27

This patch updates our vendored list of top-level domains [https://www.iana.org/domains/root/db],
which is used by the provisional domains() strategy.

6.92.1 - 2023-12-16

This patch fixes a bug introduced in version 6.92.0,
where using the data() strategy would fail
to draw a dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass] with a
defaultdict [https://docs.python.org/3/library/collections.html#collections.defaultdict] field. This was due to a bug
in the standard library which was fixed in 3.12 [https://github.com/python/cpython/pull/32056], so we’ve vendored the fix.

6.92.0 - 2023-12-10

This release adds an experimental observability [https://en.wikipedia.org/wiki/Observability_(software)]
mode. You can read the docs about it here.

6.91.2 - 2023-12-10

This patch refactors some more internals, continuing our work on supporting alternative backends (issue #3086 [https://github.com/HypothesisWorks/hypothesis/issues/3086]). There is no user-visible change.

6.91.1 - 2023-12-08

This patch fixes an issue where builds() could not be used with attrs [https://pypi.org/project/attrs/] objects that defined private attributes (i.e. attributes with a leading underscore). See also issue #3791 [https://github.com/HypothesisWorks/hypothesis/issues/3791].

This patch also adds support more generally for using builds() with attrs’ alias parameter, which was previously unsupported.

This patch increases the minimum required version of attrs to 22.2.0.

6.91.0 - 2023-11-27

This release adds an optional payload argument to hypothesis.event(),
so that you can clearly express the difference between the label and the value
of an observation. Test statistics will still summarize it as a string, but
future observability options can preserve the distinction.

6.90.1 - 2023-11-27

This patch supports assigning settings = settings(...) as a class attribute
on a subclass of a .TestCase attribute of a RuleBasedStateMachine.
Previously, this did nothing at all.

Thanks to Joey Tran for reporting these settings-related edge cases in stateful testing.

6.90.0 - 2023-11-20

This release makes it an error to assign settings = settings(...)
as a class attribute on a RuleBasedStateMachine.
This has never had any effect, and it should be used as a decorator instead:

6.89.1 - 2023-11-19

This patch refactors some internals. There is no user-visible change,
but we hope to improve performance and unlock support for alternative
backends such as symbolic execution with crosshair [https://pypi.org/project/crosshair-tool/]
in future (issue #3086 [https://github.com/HypothesisWorks/hypothesis/issues/3086]).

Thanks to Liam DeVoe for this fantastic contribution!

6.89.0 - 2023-11-16

This release teaches from_type() to handle constraints
implied by the annotated-types [https://pypi.org/project/annotated-types/] package - as used by e.g. Pydantic [https://pypi.org/project/Pydantic/].
This is usually efficient, but falls back to filtering in a few remaining cases.

Thanks to Viicos for pull request #3780 [https://github.com/HypothesisWorks/hypothesis/pull/3780]!

6.88.4 - 2023-11-13

This patch adds a warning when @st.composite
wraps a function annotated as returning a SearchStrategy,
since this is usually an error (issue #3786 [https://github.com/HypothesisWorks/hypothesis/issues/3786]). The function should return a value,
and the decorator will convert it to a function which returns a strategy.

6.88.3 - 2023-11-05

This patch refactors from_type(typing.Tuple), allowing
register_type_strategy() to take effect
for tuples instead of being silently ignored (issue #3750 [https://github.com/HypothesisWorks/hypothesis/issues/3750]).

Thanks to Nick Collins for reporting and extensive work on this issue.

6.88.2 - 2023-11-05

This patch improves the speed of the explain phase on python 3.12+, by using the new
sys.monitoring [https://docs.python.org/3/library/sys.monitoring.html#module-sys.monitoring] module to collect coverage, instead of sys.settrace [https://docs.python.org/3/library/sys.html#sys.settrace].

Thanks to Liam DeVoe for pull request #3776 [https://github.com/HypothesisWorks/hypothesis/pull/3776]!

6.88.1 - 2023-10-16

This patch improves register_type_strategy() when used with tuple subclasses,
by preventing them from being interpreted as generic and provided to strategies like st.from_type(Sequence[int])
(issue #3767 [https://github.com/HypothesisWorks/hypothesis/issues/3767]).

6.88.0 - 2023-10-15

This release allows strategy-generating functions registered with
register_type_strategy() to conditionally not
return a strategy, by returning NotImplemented [https://docs.python.org/3/library/constants.html#NotImplemented] (issue #3767 [https://github.com/HypothesisWorks/hypothesis/issues/3767]).

6.87.4 - 2023-10-12

When randoms() was called with use_true_randoms=False,
calling r.sample([], 0) would result in an error,
when it should have returned an empty sequence to agree with the normal behaviour of
random.sample() [https://docs.python.org/3/library/random.html#random.sample]. This fixes that discrepancy (issue #3765 [https://github.com/HypothesisWorks/hypothesis/issues/3765]).

6.87.3 - 2023-10-06

This patch ensures that the hypothesis codemod CLI
will print a warning instead of stopping with an internal error if
one of your files contains invalid syntax (issue #3759 [https://github.com/HypothesisWorks/hypothesis/issues/3759]).

6.87.2 - 2023-10-06

This patch makes some small changes to our NumPy integration to ensure forward
compatibility. Thanks to Mateusz Sokół for pull request #3761 [https://github.com/HypothesisWorks/hypothesis/pull/3761].

6.87.1 - 2023-10-01

Fixes issue #3755 [https://github.com/HypothesisWorks/hypothesis/issues/3755], where an internal condition turns out
to be reachable after all.

6.87.0 - 2023-09-25

This release deprecates use of assume() and reject()
outside of property-based tests, because these functions work by raising a
special exception (issue #3743 [https://github.com/HypothesisWorks/hypothesis/issues/3743]). It also fixes some type annotations
(issue #3753 [https://github.com/HypothesisWorks/hypothesis/issues/3753]).

6.86.2 - 2023-09-18

Hotfix for issue #3747 [https://github.com/HypothesisWorks/hypothesis/issues/3747], a bug in explain mode which is so rare that
we missed it in six months of dogfooding. Thanks to mygrad [https://pypi.org/project/mygrad/]
for discovering and promptly reporting this!

6.86.1 - 2023-09-17

This patch improves the documentation of @example(...).xfail()
by adding a note about PEP 614 [https://peps.python.org/pep-0614/], similar to @example(...).via(),
and adds a warning when a strategy generates a test case which seems identical to
one provided by an xfailed example.

6.86.0 - 2023-09-17

This release enables the explain phase
by default. We hope it helps you to understand why your failing tests have
failed!

6.85.1 - 2023-09-16

This patch switches some of our type annotations to use typing.Literal [https://docs.python.org/3/library/typing.html#typing.Literal]
when only a few specific values are allowed, such as UUID or IP address versions.

6.85.0 - 2023-09-16

This release deprecates the old whitelist/blacklist arguments
to characters(), in favor of
include/exclude arguments which more clearly describe their
effects on the set of characters which can be generated.

You can use Hypothesis’ codemods to automatically
upgrade to the new argument names. In a future version, the old
names will start to raise a DeprecationWarning.

6.84.3 - 2023-09-10

This patch automatically disables the differing_executors
health check for methods which are also pytest parametrized tests, because
those were mostly false alarms (issue #3733 [https://github.com/HypothesisWorks/hypothesis/issues/3733]).

6.84.2 - 2023-09-06

Building on recent releases, characters()
now accepts _any_ codec=, not just "utf-8" and "ascii".

This includes standard codecs from the codecs [https://docs.python.org/3/library/codecs.html#module-codecs] module and their
aliases, platform specific and user-registered codecs if they are
available, and python-specific text encodings [https://docs.python.org/3/library/codecs.html#python-specific-encodings]
(but not text transforms or binary transforms).

6.84.1 - 2023-09-05

This patch by Reagan Lee makes st.text(...).filter(str.isidentifier)
return an efficient custom strategy (issue #3480 [https://github.com/HypothesisWorks/hypothesis/issues/3480]).

6.84.0 - 2023-09-04

The from_regex() strategy now takes an optional
alphabet=characters(codec="utf-8") argument for unicode strings, like
text().

This offers more and more-consistent control over the generated strings,
removing previously-hard-coded limitations. With fullmatch=False and
alphabet=characters(), surrogate characters are now possible in leading
and trailing text as well as the body of the match. Negated character classes
such as [^A-Z] or \S had a hard-coded exclusion of control characters
and surrogate characters; now they permit anything in alphabet= consistent
with the class, and control characters are permitted by default.

6.83.2 - 2023-09-04

Add a health check that detects if the same test is executed
several times by different executors.
This can lead to difficult-to-debug problems such as issue #3446 [https://github.com/HypothesisWorks/hypothesis/issues/3446].

6.83.1 - 2023-09-03

Pretty-printing of failing examples can now use functions registered with
IPython.lib.pretty.for_type() [https://ipython.readthedocs.io/en/stable/api/generated/IPython.lib.pretty.html#IPython.lib.pretty.for_type] or for_type_by_name() [https://ipython.readthedocs.io/en/stable/api/generated/IPython.lib.pretty.html#IPython.lib.pretty.for_type_by_name],
as well as restoring compatibility with _repr_pretty_ callback methods
which were accidentally broken in version 6.61.2 (issue #3721 [https://github.com/HypothesisWorks/hypothesis/issues/3721]).

6.83.0 - 2023-09-01

Adds a new codec= option in characters(), making it
convenient to produce only characters which can be encoded as ascii or utf-8
bytestrings.

Support for other codecs will be added in a future release.

6.82.7 - 2023-08-28

This patch updates our autoformatting tools, improving our code style without any API changes.

6.82.6 - 2023-08-20

This patch enables and fixes many more of ruff [https://pypi.org/project/ruff/]‘s lint rules.

6.82.5 - 2023-08-18

Fixes the error message for missing [cli] extra.

6.82.4 - 2023-08-12

This patch ensures that we always close the download connection in
GitHubArtifactDatabase.

6.82.3 - 2023-08-08

We can now pretty-print combinations of zero enum.Flag [https://docs.python.org/3/library/enum.html#enum.Flag]
values, like SomeFlag(0), which has never worked before.

6.82.2 - 2023-08-06

This patch fixes pretty-printing of combinations of enum.Flag [https://docs.python.org/3/library/enum.html#enum.Flag]
values, which was previously an error (issue #3709 [https://github.com/HypothesisWorks/hypothesis/issues/3709]).

6.82.1 - 2023-08-05

Improve shrinking of floats in narrow regions that don’t cross an integer
boundary. Closes issue #3357 [https://github.com/HypothesisWorks/hypothesis/issues/3357].

6.82.0 - 2023-07-20

from_regex() now supports the atomic grouping
((?>...)) and possessive quantifier (*+, ++, ?+, {m,n}+)
syntax added in Python 3.11 [https://docs.python.org/3/whatsnew/3.11.html#re].

Thanks to Cheuk Ting Ho for implementing this!

6.81.2 - 2023-07-15

If the HYPOTHESIS_NO_PLUGINS environment variable is set, we’ll avoid
loading plugins such as the old Pydantic integration [https://docs.pydantic.dev/latest/integrations/hypothesis/] or
HypoFuzz’ CLI options [https://hypofuzz.com/docs/quickstart.html#running-hypothesis-fuzz].

This is probably only useful for our own self-tests, but documented in case it might
help narrow down any particularly weird bugs in complex environments.

6.81.1 - 2023-07-11

Fixes some lingering issues with inference of recursive types
in from_type(). Closes issue #3525 [https://github.com/HypothesisWorks/hypothesis/issues/3525].

6.81.0 - 2023-07-10

This release further improves our .patch-file support from
version 6.75, skipping duplicates, tests which use
data() (and don’t support
@example()), and various broken edge-cases.

Because libCST [https://pypi.org/project/libCST/] has released version 1.0 which uses the native parser
by default, we no longer set the LIBCST_PARSER_TYPE=native environment
variable. If you are using an older version, you may need to upgrade or
set this envvar for yourself.

6.80.1 - 2023-07-06

This patch updates some internal code for selftests.
There is no user-visible change.

6.80.0 - 2023-06-27

This release drops support for Python 3.7, which reached end of life on
2023-06-27 [https://devguide.python.org/versions/].

6.79.4 - 2023-06-27

Fixes occasional recursion-limit-exceeded errors when validating
deeply nested strategies. Closes: issue #3671 [https://github.com/HypothesisWorks/hypothesis/issues/3671]

6.79.3 - 2023-06-26

This patch updates our vendored list of top-level domains [https://www.iana.org/domains/root/db],
which is used by the provisional domains() strategy.

6.79.2 - 2023-06-22

Improve the type rendered in from_type(),
which improves the coverage of Ghostwriter.

6.79.1 - 2023-06-19

We now test against Python 3.12 beta in CI, and this patch
fixes some new deprecations.

6.79.0 - 2023-06-17

This release changes register_type_strategy()
for compatibility with PEP 585 [https://peps.python.org/pep-0585/]: we now store only a single strategy or
resolver function which is used for both the builtin and the typing
module version of each type (issue #3635 [https://github.com/HypothesisWorks/hypothesis/issues/3635]).

If you previously relied on registering separate strategies for e.g.
list vs typing.List, you may need to use explicit strategies
rather than inferring them from types.

6.78.3 - 2023-06-15

This release ensures that Ghostwriter does not use the deprecated aliases
for the collections.abc classes in collections.

6.78.2 - 2023-06-13

This patch improves Ghostwriter’s use of qualified names for re-exported
functions and classes, and avoids importing useless TypeVar [https://docs.python.org/3/library/typing.html#typing.TypeVar]s.

6.78.1 - 2023-06-12

This patch updates our vendored list of top-level domains [https://www.iana.org/domains/root/db],
which is used by the provisional domains() strategy.

6.78.0 - 2023-06-11

New input validation for recursive()
will raise an error rather than hanging indefinitely if passed
invalid max_leaves= arguments.

6.77.0 - 2023-06-09

from_type() now handles numpy array types:
np.typing.ArrayLike [https://numpy.org/doc/stable/reference/typing.html#numpy.typing.ArrayLike],
np.typing.NDArray [https://numpy.org/doc/stable/reference/typing.html#numpy.typing.NDArray], and parameterized
versions including np.ndarray[shape, elem_type] [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray].

6.76.0 - 2023-06-04

Warn in from_type() if the inferred strategy
has no variation (always returning default instances). Also handles numpy
data types by calling from_dtype() on the
corresponding dtype, thus ensuring proper variation for these types.

6.75.9 - 2023-05-31

from_type() now works in cases where we use
builds() to create an instance and the constructor
has an argument which would lead to recursion. Previously, this would raise
an error if the argument had a default value.

Thanks to Joachim B Haga for reporting and fixing this problem.

6.75.8 - 2023-05-31

In preparation for supporting JAX in hypothesis.extra.array_api,
this release supports immutable arrays being generated via xps.arrays().
In particular, we internally removed an instance of in-place array modification,
which isn’t possible for an immutable array.

6.75.7 - 2023-05-30

This release fixes some .patch-file bugs from version 6.75,
and adds automatic support for writing @hypothesis.example() or @example()
depending on the current style in your test file - defaulting to the latter.

Note that this feature requires libcst [https://pypi.org/project/libcst/] to be installed, and black [https://pypi.org/project/black/]
is strongly recommended. You can ensure you have the dependencies with
pip install "hypothesis[cli,codemods]".

6.75.6 - 2023-05-27

This patch continues the work started in pull request #3651 [https://github.com/HypothesisWorks/hypothesis/pull/3651] by adding
ruff [https://pypi.org/project/ruff/] linter rules for pyflakes [https://pypi.org/project/pyflakes/], flake8-comprehensions [https://pypi.org/project/flake8-comprehensions/],
and flake8-implicit-str-concat [https://pypi.org/project/flake8-implicit-str-concat/].

6.75.5 - 2023-05-26

This patch updates our linter stack to use ruff [https://pypi.org/project/ruff/], and fixes some
previously-ignored lints. Thanks to Christian Clauss for his careful
review and pull request #3651 [https://github.com/HypothesisWorks/hypothesis/pull/3651]!

6.75.4 - 2023-05-26

Hypothesis will now record an event for more cases where data is marked
invalid, including for exceeding the internal depth limit.

6.75.3 - 2023-05-14

This patch fixes complex_numbers() accidentally
invalidating itself when passed magnitude arguments for 32 and 64-bit widths,
i.e. 16- and 32-bit floats, due to not internally down-casting numbers (issue #3573 [https://github.com/HypothesisWorks/hypothesis/issues/3573]).

6.75.2 - 2023-05-04

Improved the documentation regarding how to use GitHubArtifactDatabase
and fixed a bug that occurred in repositories with no existing artifacts.

Thanks to Agustín Covarrubias for this contribution.

6.75.1 - 2023-04-30

hypothesis.errors will now raise AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] when attempting
to access an undefined attribute, rather than returning None [https://docs.python.org/3/library/constants.html#None].

6.75.0 - 2023-04-30

Sick of adding @example()s by hand?
Our Pytest plugin now writes .patch files to insert them for you, making
this workflow [https://blog.nelhage.com/post/property-testing-like-afl/]
easier than ever before.

Note that you’ll need LibCST [https://pypi.org/project/LibCST/] (via hypothesis[codemods]), and that
@example().via() requires PEP 614 [https://peps.python.org/pep-0614/]
(Python 3.9 or later).

6.74.1 - 2023-04-28

This patch provides better error messages for datetime- and timedelta-related
invalid dtypes in our Pandas extra (issue #3518 [https://github.com/HypothesisWorks/hypothesis/issues/3518]).
Thanks to Nick Muoh at the PyCon Sprints!

6.74.0 - 2023-04-26

This release adds support for nullable pandas dtypes [https://pandas.pydata.org/docs/user_guide/integer_na.html]
in pandas() (issue #3604 [https://github.com/HypothesisWorks/hypothesis/issues/3604]).
Thanks to Cheuk Ting Ho for implementing this at the PyCon sprints!

6.73.1 - 2023-04-27

This patch updates our minimum Numpy version to 1.16, and restores compatibility
with versions before 1.20, which were broken by a mistake in Hypothesis 6.72.4
(issue #3625 [https://github.com/HypothesisWorks/hypothesis/issues/3625]).

6.73.0 - 2023-04-25

This release upgrades the explain phase (issue #3411 [https://github.com/HypothesisWorks/hypothesis/issues/3411]).

	Following the first failure, Hypothesis will (usually) track which
lines of code were executed by passing and failing examples, and report where they
diverged - with some heuristics to drop unhelpful reports. This is an existing
feature, now upgraded and newly enabled by default.

	After shrinking to a minimal failing example, Hypothesis will try to find parts of
the example – e.g. separate args to @given() – which
can vary freely without changing the result of that minimal failing example.
If the automated experiments run without finding a passing variation, we leave a
comment in the final report:

test_x_divided_by_y(
 x=0, # or any other generated value
 y=0,
)

Just remember that the lack of an explanation sometimes just means that Hypothesis
couldn’t efficiently find one, not that no explanation (or simpler failing example)
exists.

6.72.4 - 2023-04-25

This patch fixes type annotations for the arrays()
strategy. Thanks to Francesc Elies for pull request #3602 [https://github.com/HypothesisWorks/hypothesis/pull/3602].

6.72.3 - 2023-04-25

This patch fixes a bug with from_type() with dict[tuple[int, int], str]
(issue #3527 [https://github.com/HypothesisWorks/hypothesis/issues/3527]).

Thanks to Nick Muoh at the PyCon Sprints!

6.72.2 - 2023-04-24

This patch refactors our internals to facilitate an upcoming feature.

6.72.1 - 2023-04-19

This patch fixes some documentation and prepares for future features.

6.72.0 - 2023-04-16

This release deprecates Healthcheck.all(), and adds a codemod
to automatically replace it with list(Healthcheck) (issue #3596 [https://github.com/HypothesisWorks/hypothesis/issues/3596]).

6.71.0 - 2023-04-07

This release adds GitHubArtifactDatabase, a new database
backend that allows developers to access the examples found by a Github Actions CI job.
This is particularly useful for workflows that involve continuous fuzzing,
like HypoFuzz [https://hypofuzz.com/].

Thanks to Agustín Covarrubias for this feature!

6.70.2 - 2023-04-03

This patch clarifies the reporting of time spent generating data. A
simple arithmetic mean of the percentage of time spent can be
misleading; reporting the actual time spent avoids misunderstandings.

Thanks to Andrea Reina for reporting and fixing issue #3598 [https://github.com/HypothesisWorks/hypothesis/issues/3598]!

6.70.1 - 2023-03-27

This patch updates our vendored list of top-level domains [https://www.iana.org/domains/root/db],
which is used by the provisional domains() strategy.

6.70.0 - 2023-03-16

This release adds an optional domains= parameter to the
emails() strategy, and excludes
the special-use .arpa [https://en.wikipedia.org/wiki/.arpa] domain from the default
strategy (issue #3567 [https://github.com/HypothesisWorks/hypothesis/issues/3567]).

Thanks to Jens Tröger for reporting and fixing this bug!

6.69.0 - 2023-03-15

This release turns HealthCheck.return_value and HealthCheck.not_a_test_method
into unconditional errors. Passing them to suppress_health_check= is therefore a deprecated no-op.
(issue #3568 [https://github.com/HypothesisWorks/hypothesis/issues/3568]). Thanks to Reagan Lee for the patch!

Separately, GraalPy can now run and pass most of the hypothesis test suite (issue #3587 [https://github.com/HypothesisWorks/hypothesis/issues/3587]).

6.68.3 - 2023-03-15

This patch updates our vendored list of top-level domains [https://www.iana.org/domains/root/db],
which is used by the provisional domains() strategy.

6.68.2 - 2023-02-17

This patch fixes missing imports of the re [https://docs.python.org/3/library/re.html#module-re] module, when ghostwriting
tests which include compiled patterns or regex flags.
Thanks to Jens Heinrich for reporting and promptly fixing this bug!

6.68.1 - 2023-02-12

This patch adds some private hooks for use in research on
Schemathesis [https://github.com/schemathesis/schemathesis]
(see our preprint here [https://arxiv.org/abs/2112.10328]).

6.68.0 - 2023-02-09

This release adds support for the Array API’s 2022.12 release [https://data-apis.org/array-api/2022.12/] via the api_version argument in
make_strategies_namespace(). Concretely this
involves complex support in its existing strategies, plus an introduced
xps.complex_dtypes() strategy.

Additionally this release now treats hypothesis.extra.array_api as stable, meaning breaking changes should only happen with major
releases of Hypothesis.

6.67.1 - 2023-02-05

This patch updates our autoformatting tools, improving our code style without any API changes.

6.67.0 - 2023-02-05

This release allows for more precise generation of complex numbers using
from_dtype(), by supporting the width,
min_magnitude, and min_magnitude arguments (issue #3468 [https://github.com/HypothesisWorks/hypothesis/issues/3468]).

Thanks to Felix Divo for this feature!

6.66.2 - 2023-02-04

This patch fixes a rare RecursionError when pretty-printing a multi-line
object without type-specific printer, which was passed to a function which
returned the same object by .map() or builds()
and thus recursed due to the new pretty reprs in Hypothesis 6.65.0 - 2023-01-24
(issue #3560 [https://github.com/HypothesisWorks/hypothesis/issues/3560]). Apologies to all those affected.

6.66.1 - 2023-02-03

This makes from_dtype() pass through the parameter
allow_subnormal for complex dtypes.

6.66.0 - 2023-02-02

This release adds a width parameter to complex_numbers(),
analogously to floats().

Thanks to Felix Divo for the new feature!

6.65.2 - 2023-01-27

This patch fixes invalid annotations detected for the tests generated by
Ghostwritter. It will now correctly generate Optional
types with just one type argument and handle union expressions inside of type
arguments correctly. Additionally, it now supports code with the
from __future__ import annotations marker for Python 3.10 and newer.

6.65.1 - 2023-01-26

This release improves the pretty-printing of enums in falsifying examples,
so that they print as their full identifier rather than their repr.

6.65.0 - 2023-01-24

Hypothesis now reports some failing inputs by showing the call which constructed
an object, rather than the repr of the object. This can be helpful when the default
repr does not include all relevant details, and will unlock further improvements
in a future version.

For now, we capture calls made via builds(), and via
SearchStrategy.map().

6.64.0 - 2023-01-23

The Ghostwritter will now include type annotations on tests
for type-annotated code. If you want to force this to happen (or not happen),
pass a boolean to the new annotate= argument to the Python functions, or
the --[no-]annotate CLI flag.

Thanks to Nicolas Ganz for this new feature!

6.63.0 - 2023-01-20

range_indexes() now accepts a name= argument,
to generate named pandas.RangeIndex [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.RangeIndex.html#pandas.RangeIndex] objects.

Thanks to Sam Watts for this new feature!

6.62.1 - 2023-01-14

This patch tweaks xps.arrays() internals to improve PyTorch compatibility.
Specifically, torch.full() does not accept integers as the shape argument
(n.b. technically “size” in torch), but such behaviour is expected in internal
code, so we copy the torch module and patch in a working full() function.

6.62.0 - 2023-01-08

A classic error when testing is to write a test function that can never fail,
even on inputs that aren’t allowed or manually provided. By analogy to the
design pattern of:

@pytest.mark.parametrize("arg", [
 ..., # passing examples
 pytest.param(..., marks=[pytest.mark.xfail]) # expected-failing input
])

we now support @example(...).xfail(), with
the same (optional) condition, reason, and raises arguments as
pytest.mark.xfail().

Naturally you can also write .via(...).xfail(...), or .xfail(...).via(...),
if you wish to note the provenance of expected-failing examples.

6.61.3 - 2023-01-08

This patch teaches our enhanced get_type_hints() [https://docs.python.org/3/library/typing.html#typing.get_type_hints] function to
‘see through’ partial [https://docs.python.org/3/library/functools.html#functools.partial] application, allowing inference
from type hints to work in a few more cases which aren’t (yet!) supported
by the standard-library version.

6.61.2 - 2023-01-07

This patch improves our pretty-printing of failing examples, including
some refactoring to prepare for exciting future features.

6.61.1 - 2023-01-06

This patch brings our domains() and
emails() strategies into compliance with
RFC 5890 §2.3.1 [https://datatracker.ietf.org/doc/html/rfc5890.html]: we no longer generate parts-of-domains
where the third and fourth characters are -- (“R-LDH labels”),
though future versions may deliberately generate xn-- punycode
labels. Thanks to python-email-validator [https://pypi.org/project/python-email-validator/] for the report [https://github.com/JoshData/python-email-validator/issues/92]!

6.61.0 - 2022-12-11

This release improves our treatment of database keys, which based on (among other things)
the source code of your test function. We now post-process this source to ignore
decorators, comments, trailing whitespace, and blank lines - so that you can add
@example()s or make some small no-op edits to your code
without preventing replay of any known failing or covering examples.

6.60.1 - 2022-12-11

This patch updates our vendored list of top-level domains [https://www.iana.org/domains/root/db],
which is used by the provisional domains() strategy.

6.60.0 - 2022-12-04

This release improves Hypothesis’ ability to resolve forward references in
type annotations. It fixes a bug that prevented
builds() from being used with pydantic models that
possess updated forward references [https://pydantic-docs.helpmanual.io/usage/postponed_annotations/]. See issue #3519 [https://github.com/HypothesisWorks/hypothesis/issues/3519].

6.59.0 - 2022-12-02

The @example(...) decorator now has a .via()
method, which future tools will use to track automatically-added covering
examples (issue #3506 [https://github.com/HypothesisWorks/hypothesis/issues/3506]).

6.58.2 - 2022-11-30

This patch updates our vendored list of top-level domains [https://www.iana.org/domains/root/db],
which is used by the provisional domains() strategy.

6.58.1 - 2022-11-26

This patch shifts hypothesis[lark] from depending on the old lark-parser [https://pypi.org/project/lark-parser/]
package to the new lark [https://pypi.org/project/lark/] package. There are no code changes in Hypothesis,
it’s just that Lark got a new name on PyPI for version 1.0 onwards.

6.58.0 - 2022-11-19

register_random() has used weakref [https://docs.python.org/3/library/weakref.html#module-weakref] since 6.27.1 - 2021-11-22,
allowing the Random [https://docs.python.org/3/library/random.html#random.Random]-compatible objects to be garbage-collected when
there are no other references remaining in order to avoid memory leaks.
We now raise an error or emit a warning when this seems likely to happen immediately.

The type annotation of register_random() was also widened so that
structural subtypes of Random [https://docs.python.org/3/library/random.html#random.Random] are accepted by static typecheckers.

6.57.1 - 2022-11-14

This patch updates some internal type annotations and fixes a formatting bug in the
explain phase reporting.

6.57.0 - 2022-11-14

Hypothesis now raises an error if you passed a strategy as the alphabet=
argument to text(), and it generated something
which was not a length-one string. This has never been supported, we’re just
adding explicit validation to catch cases like this StackOverflow question [https://stackoverflow.com/a/74336909/9297601].

6.56.4 - 2022-10-28

This patch updates some docs, and depends on exceptiongroup [https://pypi.org/project/exceptiongroup/] 1.0.0
final to avoid a bug in the previous version.

6.56.3 - 2022-10-17

This patch teaches text() to rewrite a few more
filter predicates (issue #3134 [https://github.com/HypothesisWorks/hypothesis/issues/3134]). You’re unlikely to notice any change.

6.56.2 - 2022-10-10

This patch updates our vendored list of top-level domains [https://www.iana.org/domains/root/db],
which is used by the provisional domains() strategy, and fixes some
incorrect examples in the docs for mutually_broadcastable_shapes().

6.56.1 - 2022-10-05

This patch improves the error message when Hypothesis detects “flush to zero”
mode for floating-point: we now report which package(s) enabled this, which
can make debugging much easier. See issue #3458 [https://github.com/HypothesisWorks/hypothesis/issues/3458] for details.

6.56.0 - 2022-10-02

This release defines __bool__() on SearchStrategy.
It always returns True, like before, but also emits a warning to help with
cases where you intended to draw a value (issue #3463 [https://github.com/HypothesisWorks/hypothesis/issues/3463]).

6.55.0 - 2022-09-29

In preparation for future versions of the Array API standard [https://data-apis.org/array-api/latest/future_API_evolution.html],
make_strategies_namespace() now accepts an
optional api_version argument, which determines the version conformed to by
the returned strategies namespace. If None, the version of the passed array
module xp is inferred.

This release also introduces xps.real_dtypes(). This is currently
equivalent to the existing xps.numeric_dtypes() strategy, but exists
because the latter is expected to include complex numbers in the next version of
the standard.

6.54.6 - 2022-09-18

If multiple explicit examples (from @example())
raise a Skip exception, for consistency with generated examples we now re-raise
the first instead of collecting them into an ExceptionGroup (issue #3453 [https://github.com/HypothesisWorks/hypothesis/issues/3453]).

6.54.5 - 2022-09-05

This patch updates our autoformatting tools, improving our code style without any API changes.

6.54.4 - 2022-08-20

This patch fixes some type annotations for Python 3.9 and earlier (issue #3397 [https://github.com/HypothesisWorks/hypothesis/issues/3397]),
and teaches explain mode about certain locations it should not
bother reporting (issue #3439 [https://github.com/HypothesisWorks/hypothesis/issues/3439]).

6.54.3 - 2022-08-12

This patch teaches the Ghostwriter an additional check for function
and class locations that should make it use public APIs more often.

6.54.2 - 2022-08-10

This patch fixes our workaround for a pytest bug where the inner exceptions in
an ExceptionGroup are not displayed [https://github.com/pytest-dev/pytest/issues/9159]
(issue #3430 [https://github.com/HypothesisWorks/hypothesis/issues/3430]).

6.54.1 - 2022-08-02

This patch makes FailedHealthCheck and DeadlineExceeded exceptions
picklable, for compatibility with Django’s parallel test runner (issue #3426 [https://github.com/HypothesisWorks/hypothesis/issues/3426]).

6.54.0 - 2022-08-02

Reporting of multiple failing examples
now uses the PEP 654 [https://peps.python.org/pep-0654/] ExceptionGroup [https://docs.python.org/3.11/library/exceptions.html#ExceptionGroup] type, which is provided by the
exceptiongroup [https://pypi.org/project/exceptiongroup/] backport on Python 3.10 and earlier (issue #3175 [https://github.com/HypothesisWorks/hypothesis/issues/3175]).
hypothesis.errors.MultipleFailures is therefore deprecated.

Failing examples and other reports are now stored as PEP 678 [https://peps.python.org/pep-0678/] exception notes, which
ensures that they will always appear together with the traceback and other information
about their respective error.

6.53.0 - 2022-07-25

from_field() now supports UsernameField
from django.contrib.auth.forms [https://django.readthedocs.io/en/stable/topics/auth/default.html#module-django.contrib.auth.forms].

Thanks to Afonso Silva for reporting and working on issue #3417 [https://github.com/HypothesisWorks/hypothesis/issues/3417].

6.52.4 - 2022-07-22

This patch improves the error message when you pass filenames to the hypothesis write
CLI, which takes the name of a module or function (e.g. hypothesis write gzip or
hypothesis write package.some_function rather than hypothesis write script.py).

Thanks to Ed Rogers for implementing this as part of the SciPy 2022 sprints!

6.52.3 - 2022-07-19

This patch ensures that the warning for non-interactive .example()
points to your code instead of Hypothesis internals (issue #3403 [https://github.com/HypothesisWorks/hypothesis/issues/3403]).

Thanks to @jameslamb for this fix.

6.52.2 - 2022-07-19

This patch makes integers() more likely to
generate boundary values for large two-sided intervals (issue #2942 [https://github.com/HypothesisWorks/hypothesis/issues/2942]).

6.52.1 - 2022-07-18

This patch adds filter rewriting for math.isfinite() [https://docs.python.org/3/library/math.html#math.isfinite], math.isinf() [https://docs.python.org/3/library/math.html#math.isinf], and math.isnan() [https://docs.python.org/3/library/math.html#math.isnan]
on integers() or floats() (issue #2701 [https://github.com/HypothesisWorks/hypothesis/issues/2701]).

Thanks to Sam Clamons at the SciPy Sprints!

6.52.0 - 2022-07-18

This release adds the allow_subnormal argument to complex_numbers() by
applying it to each of the real and imaginary parts separately. Closes issue #3390 [https://github.com/HypothesisWorks/hypothesis/issues/3390].

Thanks to Evan Tey for this fix.

6.51.0 - 2022-07-17

Issue a deprecation warning if a function decorated with
@composite
does not draw any values (issue #3384 [https://github.com/HypothesisWorks/hypothesis/issues/3384]).

Thanks to Grzegorz Zieba, Rodrigo Girão, and Thomas Ball for
working on this at the EuroPython sprints!

6.50.1 - 2022-07-09

This patch improves the error messages in @example()
argument validation following the recent release of 6.49.1.

6.50.0 - 2022-07-09

This release allows from_dtype() to generate
Unicode strings which cannot be encoded in UTF-8, but are valid in Numpy
arrays (which use UTF-32).

This logic will only be used with Numpy [https://pypi.org/project/Numpy/] >= 1.19, because earlier
versions have an issue [https://github.com/numpy/numpy/issues/15363]
which led us to revert Hypothesis 5.2 last time!

6.49.1 - 2022-07-05

This patch fixes some inconsistency between argument handling for
@example and @given
(2706 [https://github.com/HypothesisWorks/hypothesis/issues/2706#issuecomment-1168363177]).

6.49.0 - 2022-07-04

This release uses PEP 612 [https://peps.python.org/pep-0612/] typing.ParamSpec [https://docs.python.org/3/library/typing.html#typing.ParamSpec] (or the
typing_extensions [https://pypi.org/project/typing_extensions/] backport) to express the first-argument-removing
behaviour of @st.composite
and signature-preservation of functions()
to IDEs, editor plugins, and static type checkers such as mypy [https://pypi.org/project/mypy/].

6.48.3 - 2022-07-03

hypothesis.event() now works for hashable objects which do not
support weakrefs, such as integers and tuples.

6.48.2 - 2022-06-29

This patch tidies up some internal introspection logic, which will improve
support for positional-only arguments in a future release (issue #2706 [https://github.com/HypothesisWorks/hypothesis/issues/2706]).

6.48.1 - 2022-06-27

This release automatically rewrites some simple filters, such as
floats().filter(lambda x: x >= 10) to the more efficient
floats(min_value=10), based on the AST of the predicate.

We continue to recommend using the efficient form directly wherever
possible, but this should be useful for e.g. pandera [https://pypi.org/project/pandera/] “Checks”
where you already have a simple predicate and translating manually
is really annoying. See issue #2701 [https://github.com/HypothesisWorks/hypothesis/issues/2701] for details.

6.48.0 - 2022-06-27

This release raises SkipTest [https://docs.python.org/3/library/unittest.html#unittest.SkipTest] for tests which never executed any
examples, for example because the phases setting
excluded the explicit, reuse,
and generate phases. This helps to avoid cases where
broken tests appear to pass, because they didn’t actually execute (issue #3328 [https://github.com/HypothesisWorks/hypothesis/issues/3328]).

6.47.5 - 2022-06-25

This patch fixes type annotations that had caused the signature of
@given to be partially-unknown to type-checkers for Python
versions before 3.10.

6.47.4 - 2022-06-23

This patch fixes from_type() on Python 3.11,
following python/cpython#93754 [https://github.com/python/cpython/pull/93754/].

6.47.3 - 2022-06-15

This patch makes the too_slow health check more
consistent with long deadline tests (issue #3367 [https://github.com/HypothesisWorks/hypothesis/issues/3367])
and fixes an install issue under pipenv [https://pypi.org/project/pipenv/] which was introduced in
Hypothesis 6.47.2 (issue #3374 [https://github.com/HypothesisWorks/hypothesis/issues/3374]).

6.47.2 - 2022-06-12

We now use the PEP 654 [https://peps.python.org/pep-0654/] ExceptionGroup [https://docs.python.org/3.11/library/exceptions.html#ExceptionGroup]
type - provided by the exceptiongroup [https://pypi.org/project/exceptiongroup/] backport on older Pythons -
to ensure that if multiple errors are raised in teardown, they will all propagate.

6.47.1 - 2022-06-10

Our pretty-printer no longer sorts dictionary keys, since iteration order is
stable in Python 3.7+ and this can affect reproducing examples (issue #3370 [https://github.com/HypothesisWorks/hypothesis/issues/3370]).
This PR was kindly supported by Ordina Pythoneers [https://www.ordina.nl/vakgebieden/python/].

6.47.0 - 2022-06-07

The Ghostwritter can now write tests for
@classmethod [https://docs.python.org/3/library/functions.html#classmethod] or @staticmethod [https://docs.python.org/3/library/functions.html#staticmethod]
methods, in addition to the existing support for functions and other callables
(issue #3318 [https://github.com/HypothesisWorks/hypothesis/issues/3318]). Thanks to Cheuk Ting Ho for the patch.

6.46.11 - 2022-06-02

Mention hypothesis.strategies.timezones()
in the documentation of hypothesis.strategies.datetimes() for completeness.

Thanks to George Macon for this addition.

6.46.10 - 2022-06-01

This release contains some small improvements to our documentation.
Thanks to Felix Divo for his contribution!

6.46.9 - 2022-05-25

This patch by Adrian Garcia Badaracco adds type annotations
to some private internals (issue #3074 [https://github.com/HypothesisWorks/hypothesis/issues/3074]).

6.46.8 - 2022-05-25

This patch by Phillip Schanely makes changes to the
floats() strategy when min_value or max_value is
present.
Hypothesis will now be capable of generating every representable value in the bounds.
You may notice that hypothesis is more likely to test values near boundaries, and values
that are very close to zero.

These changes also support future integrations with symbolic execution tools and fuzzers
(issue #3086 [https://github.com/HypothesisWorks/hypothesis/issues/3086]).

6.46.7 - 2022-05-19

This patch updates the type annotations for tuples() and
one_of() so that type-checkers require its arguments to be
positional-only, and so that it no longer fails under pyright-strict mode (see
issue #3348 [https://github.com/HypothesisWorks/hypothesis/issues/3348]). Additional changes are made to Hypothesis’ internals improve pyright
scans.

6.46.6 - 2022-05-18

This patch by Cheuk Ting Ho adds support for PEP 655 [https://peps.python.org/pep-0655/] Required and NotRequired as attributes of
TypedDict [https://docs.python.org/3/library/typing.html#typing.TypedDict] in from_type() (issue #3339 [https://github.com/HypothesisWorks/hypothesis/issues/3339]).

6.46.5 - 2022-05-15

This patch fixes from_dtype() with long-precision
floating-point datatypes (typecode g; see numpy.typename() [https://numpy.org/doc/stable/reference/generated/numpy.typename.html#numpy.typename]).

6.46.4 - 2022-05-15

This patch improves some error messages for custom signatures
containing invalid parameter names (issue #3317 [https://github.com/HypothesisWorks/hypothesis/issues/3317]).

6.46.3 - 2022-05-11

This patch by Cheuk Ting Ho makes it an explicit error to call from_type()
or register_type_strategy() with types that have no runtime instances (issue #3280 [https://github.com/HypothesisWorks/hypothesis/issues/3280]).

6.46.2 - 2022-05-03

This patch fixes silently dropping examples when the @example
decorator is applied to itself (issue #3319 [https://github.com/HypothesisWorks/hypothesis/issues/3319]). This was always a weird pattern, but now it
works. Thanks to Ray Sogata, Keeri Tramm, and Kevin Khuong for working on this patch!

6.46.1 - 2022-05-01

This patch fixes a rare bug where we could incorrectly treat
empty [https://docs.python.org/3/library/inspect.html#inspect.Parameter.empty] as a type annotation,
if the callable had an explicitly assigned __signature__.

6.46.0 - 2022-05-01

This release adds an allow_nil argument to uuids(),
which you can use to… generate the nil UUID. Thanks to Shlok Gandhi for the patch!

6.45.4 - 2022-05-01

This patch fixes some missing imports for certain Ghostwritten
tests. Thanks to Mel Seto for fixing issue #3316 [https://github.com/HypothesisWorks/hypothesis/issues/3316].

6.45.3 - 2022-04-30

This patch teaches the Ghostwriter to recognize
many more common argument names (issue #3311 [https://github.com/HypothesisWorks/hypothesis/issues/3311]).

6.45.2 - 2022-04-29

This patch fixes issue #3314 [https://github.com/HypothesisWorks/hypothesis/issues/3314], where Hypothesis would raise an internal
error from domains() or (only on Windows)
from timezones() in some rare circumstances
where the installation was subtly broken.

Thanks to Munir Abdinur for this contribution.

6.45.1 - 2022-04-27

This release fixes deprecation warnings about sre_compile and sre_parse
imports and importlib.resources usage when running Hypothesis on Python 3.11.

Thanks to Florian Bruhin for this contribution.

6.45.0 - 2022-04-22

This release updates xps.indices() by introducing an allow_newaxis
argument, defaulting to False. If allow_newaxis=True, indices can be
generated that add dimensions to arrays, which is achieved by the indexer
containing None. This change is to support a specification change that
expand dimensions via indexing (data-apis/array-api#408 [https://github.com/data-apis/array-api/pull/408]).

6.44.0 - 2022-04-21

This release adds a names argument to indexes()
and series(), so that you can create Pandas
objects with specific or varied names.

Contributed by Sam Watts.

6.43.3 - 2022-04-18

This patch updates the type annotations for @given
so that type-checkers will warn on mixed positional and keyword arguments,
as well as fixing issue #3296 [https://github.com/HypothesisWorks/hypothesis/issues/3296].

6.43.2 - 2022-04-16

Fixed a type annotation for pyright --strict (issue #3287 [https://github.com/HypothesisWorks/hypothesis/issues/3287]).

6.43.1 - 2022-04-13

This patch makes it an explicit error to call
register_type_strategy() with a
Pydantic GenericModel [https://pydantic-docs.helpmanual.io/usage/models/#generic-models]
and a callable, because GenericModel isn’t actually a generic type at
runtime and so you have to register each of the “parametrized versions”
(actually subclasses!) manually. See issue #2940 [https://github.com/HypothesisWorks/hypothesis/issues/2940] for more details.

6.43.0 - 2022-04-12

This release makes it an explicit error to apply
@pytest.fixture [https://docs.pytest.org/en/stable/reference/reference.html#pytest.fixture] to a function which has
already been decorated with @given(). Previously,
pytest would convert your test to a fixture, and then never run it.

6.42.3 - 2022-04-10

This patch fixes from_type() on a TypedDict [https://docs.python.org/3/library/typing.html#typing.TypedDict]
with complex annotations, defined in a file using from __future__ import annotations.
Thanks to Katelyn Gigante for identifying and fixing this bug!

6.42.2 - 2022-04-10

The Hypothesis pytest plugin was not outputting valid xunit2 nodes when
--junit-xml was specified. This has been broken since Pytest 5.4, which
changed the internal API for adding nodes to the junit report.

This also fixes the issue when using hypothesis with --junit-xml and
pytest-xdist where the junit xml report would not be xunit2 compatible.
Now, when using with pytest-xdist, the junit report will just omit the
<properties> node.

For more details, see this pytest issue [https://github.com/pytest-dev/pytest/issues/1126#issuecomment-484581283],
this pytest issue [https://github.com/pytest-dev/pytest/issues/7767#issuecomment-1082436256],
and issue #1935 [https://github.com/HypothesisWorks/hypothesis/issues/1935]

Thanks to Brandon Chinn for this bug fix!

6.42.1 - 2022-04-10

This patch fixes pretty-printing of regular expressions in Python 3.11.0a7, and
updates our vendored list of top-level domains [https://www.iana.org/domains/root/db],.

6.42.0 - 2022-04-09

This release makes st.functions(pure=True) less noisy (issue #3253 [https://github.com/HypothesisWorks/hypothesis/issues/3253]),
and generally improves pretty-printing of functions.

6.41.0 - 2022-04-01

This release changes the implementation of infer to be an alias
for Ellipsis [https://docs.python.org/3/library/constants.html#Ellipsis]. E.g. @given(a=infer) is now equivalent to @given(a=...). Furthermore, @given(...) can now be specified so that
@given will infer the strategies for all arguments of the
decorated function based on its annotations.

6.40.3 - 2022-04-01

This patch simplifies the repr of the strategies namespace returned in
make_strategies_namespace(), e.g.

>>> from hypothesis.extra.array_api import make_strategies_namespace
>>> from numpy import array_api as xp
>>> xps = make_strategies_namespace(xp)
>>> xps
make_strategies_namespace(numpy.array_api)

6.40.2 - 2022-04-01

Fixed from_type() support for
PEP 604 [https://peps.python.org/pep-0604/] union types, like int | None (issue #3255 [https://github.com/HypothesisWorks/hypothesis/issues/3255]).

6.40.1 - 2022-04-01

Fixed an internal error when given() was passed a lambda.

6.40.0 - 2022-03-29

The Ghostwriter can now write tests which check that
two or more functions are equivalent on valid inputs, or raise the same
type of exception for invalid inputs (issue #3267 [https://github.com/HypothesisWorks/hypothesis/issues/3267]).

6.39.6 - 2022-03-27

This patch makes some quality-of-life improvements to the
Ghostwriter: we guess the text()
strategy for arguments named text (…obvious in hindsight, eh?);
and improved the error message if you accidentally left in a
nothing() or broke your rich [https://pypi.org/project/rich/] install.

6.39.5 - 2022-03-26

This patch improves our error detection and message when Hypothesis is run
on a Python implementation without support for -0.0, which is required
for the floats() strategy but can be disabled by
unsafe compiler options [https://simonbyrne.github.io/notes/fastmath/]
(issue #3265 [https://github.com/HypothesisWorks/hypothesis/issues/3265]).

6.39.4 - 2022-03-17

This patch tweaks some internal formatting. There is no user-visible change.

6.39.3 - 2022-03-07

If the shrink phase is disabled, we now stop the
generate phase as soon as an error is found regardless
of the value of the report_multiple_examples setting, since that’s
probably what you wanted (issue #3244 [https://github.com/HypothesisWorks/hypothesis/issues/3244]).

6.39.2 - 2022-03-07

This patch clarifies rare error messages in
builds() (issue #3225 [https://github.com/HypothesisWorks/hypothesis/issues/3225]) and
floats() (issue #3207 [https://github.com/HypothesisWorks/hypothesis/issues/3207]).

6.39.1 - 2022-03-03

This patch fixes a regression where the bound inner function
(your_test.hypothesis.inner_test) would be invoked with positional
arguments rather than passing them by name, which broke
pytest-asyncio [https://pypi.org/project/pytest-asyncio/] (issue #3245 [https://github.com/HypothesisWorks/hypothesis/issues/3245]).

6.39.0 - 2022-03-01

This release improves Hypothesis’ handling of positional-only arguments,
which are now allowed @st.composite
strategies.

On Python 3.8 and later, the first arguments to builds()
and from_model() are now natively positional-only.
In cases which were already errors, the TypeError from incorrect usage will
therefore be raises immediately when the function is called, rather than when
the strategy object is used.

6.38.0 - 2022-02-26

This release makes floats() error consistently when
your floating-point hardware has been configured to violate IEEE-754 for
subnormal numbers [https://en.wikipedia.org/wiki/Subnormal_number], instead of
only when an internal assertion was tripped (issue #3092 [https://github.com/HypothesisWorks/hypothesis/issues/3092]).

If this happens to you, passing allow_subnormal=False will suppress the explicit
error. However, we strongly recommend fixing the root cause by disabling global-effect
unsafe-math compiler options instead, or at least consulting e.g. Simon Byrne’s
Beware of fast-math [https://simonbyrne.github.io/notes/fastmath/] explainer first.

6.37.2 - 2022-02-21

This patch fixes a bug in stateful testing, where returning a single value
wrapped in multiple() would be printed such that
the assigned variable was a tuple rather than the single element
(issue #3236 [https://github.com/HypothesisWorks/hypothesis/issues/3236]).

6.37.1 - 2022-02-21

This patch fixes a warning under pytest [https://pypi.org/project/pytest/] 7 relating to our
rich traceback display logic (issue #3223 [https://github.com/HypothesisWorks/hypothesis/issues/3223]).

6.37.0 - 2022-02-18

When distinguishing multiple errors, Hypothesis now looks at the inner
exceptions of PEP 654 [https://peps.python.org/pep-0654/] ExceptionGroups.

6.36.2 - 2022-02-13

This patch updates our vendored list of top-level domains [https://www.iana.org/domains/root/db],
which is used by the provisional domains() strategy.

6.36.1 - 2022-01-31

This patch fixes some deprecation warnings from pytest [https://pypi.org/project/pytest/] 7.0,
along with some code formatting and docs updates.

6.36.0 - 2022-01-19

This release disallows using typing.Final [https://docs.python.org/3/library/typing.html#typing.Final]
with from_type()
and register_type_strategy().

Why?
Because Final can only be used during class definition.
We don’t generate class attributes.

It also does not make sense as a runtime type on its own.

6.35.1 - 2022-01-17

This patch fixes hypothesis write output highlighting with rich [https://pypi.org/project/rich/]
version 12.0 and later.

6.35.0 - 2022-01-08

This release disallows using typing.ClassVar [https://docs.python.org/3/library/typing.html#typing.ClassVar]
with from_type()
and register_type_strategy().

Why?
Because ClassVar can only be used during class definition.
We don’t generate class attributes.

It also does not make sense as a runtime type on its own.

6.34.2 - 2022-01-05

This patch updates our vendored list of top-level domains [https://www.iana.org/domains/root/db],
which is used by the provisional domains() strategy.

6.34.1 - 2021-12-31

This patch fixes issue #3169 [https://github.com/HypothesisWorks/hypothesis/issues/3169], an extremely rare bug which would
trigger if an internal least-recently-reused cache dropped a newly
added entry immediately after it was added.

6.34.0 - 2021-12-31

This release fixes issue #3133 [https://github.com/HypothesisWorks/hypothesis/issues/3133] and issue #3144 [https://github.com/HypothesisWorks/hypothesis/issues/3144], where attempting
to generate Pandas series of lists or sets would fail with confusing
errors if you did not specify dtype=object.

6.33.0 - 2021-12-30

This release disallows using typing.TypeAlias [https://docs.python.org/3/library/typing.html#typing.TypeAlias]
with from_type()
and register_type_strategy().

Why? Because TypeAlias is not really a type,
it is a tag for type checkers that some expression is a type alias,
not something else.

It does not make sense for Hypothesis to resolve it as a strategy.
References issue #2978 [https://github.com/HypothesisWorks/hypothesis/issues/2978].

6.32.1 - 2021-12-23

This patch updates our autoformatting tools, improving our code style without any API changes.

6.32.0 - 2021-12-23

This release drops support for Python 3.6, which reached end of life upstream [https://devguide.python.org/#status-of-python-branches] on 2021-12-23.

6.31.6 - 2021-12-15

This patch adds a temporary hook for a downstream tool,
which is not part of the public API.

6.31.5 - 2021-12-14

This release updates our copyright headers to use a general authorship statement and omit the year [https://www.linuxfoundation.org/blog/copyright-notices-in-open-source-software-projects/].

6.31.4 - 2021-12-11

This patch makes the .example() method more representative of
test-time data generation, albeit often at a substantial cost to
readability (issue #3182 [https://github.com/HypothesisWorks/hypothesis/issues/3182]).

6.31.3 - 2021-12-10

This patch improves annotations on some of Hypothesis’ internal functions, in order to
deobfuscate the signatures of some strategies. In particular, strategies shared between
hypothesis.extra.numpy and
the hypothesis.extra.array_api extra will benefit from this patch.

6.31.2 - 2021-12-10

This patch fix invariants display in stateful falsifying examples (issue #3185 [https://github.com/HypothesisWorks/hypothesis/issues/3185]).

6.31.1 - 2021-12-10

This patch updates xps.indices() so no flat indices are generated, i.e.
generated indices will now always explicitly cover each axes of an array if no
ellipsis is present. This is to be consistent with a specification change that
dropped support for flat indexing
(#272 [https://github.com/data-apis/array-api/pull/272]).

6.31.0 - 2021-12-09

This release makes us compatible with Django [https://pypi.org/project/Django/] 4.0, in particular by adding
support for use of zoneinfo [https://docs.python.org/3/library/zoneinfo.html#module-zoneinfo] timezones (though we respect the new
USE_DEPRECATED_PYTZ setting if you need it).

6.30.1 - 2021-12-05

This patch updates our vendored list of top-level domains [https://www.iana.org/domains/root/db],
which is used by the provisional domains() strategy.

6.30.0 - 2021-12-03

This release adds an allow_subnormal argument to the
floats() strategy, which can explicitly toggle the
generation of subnormal floats [https://en.wikipedia.org/wiki/Subnormal_number] (issue #3155 [https://github.com/HypothesisWorks/hypothesis/issues/3155]).
Disabling such generation is useful when testing flush-to-zero builds of
libraries.

nps.from_dtype() and
xps.from_dtype() can also accept the allow_subnormal argument, and
xps.from_dtype() or xps.arrays() will disable subnormals by default
if the array module xp is detected to flush-to-zero (like is typical with
CuPy).

6.29.3 - 2021-12-02

This patch fixes a bug in mutually_broadcastable_shapes(),
which restricted the patterns of singleton dimensions that could be generated for
dimensions that extended beyond base_shape (issue #3170 [https://github.com/HypothesisWorks/hypothesis/issues/3170]).

6.29.2 - 2021-12-02

This patch clarifies our pretty-printing of DataFrames (issue #3114 [https://github.com/HypothesisWorks/hypothesis/issues/3114]).

6.29.1 - 2021-12-02

This patch documents timezones()
Windows-only requirement [https://docs.python.org/3/library/zoneinfo.html#data-sources]
for the tzdata [https://pypi.org/project/tzdata/] package, and ensures that
pip install hypothesis[zoneinfo] will install the latest version.

6.29.0 - 2021-11-29

This release teaches builds() to use
deferred() when resolving unrecognised type hints,
so that you can conveniently register strategies for recursive types
with constraints on some arguments (issue #3026 [https://github.com/HypothesisWorks/hypothesis/issues/3026]):

class RecursiveClass:
 def __init__(self, value: int, next_node: typing.Optional["SomeClass"]):
 assert value > 0
 self.value = value
 self.next_node = next_node

st.register_type_strategy(
 RecursiveClass, st.builds(RecursiveClass, value=st.integers(min_value=1))
)

6.28.1 - 2021-11-28

This release fixes some internal calculations related to collection sizes (issue #3143 [https://github.com/HypothesisWorks/hypothesis/issues/3143]).

6.28.0 - 2021-11-28

This release modifies our pytest [https://pypi.org/project/pytest/] plugin, to avoid importing Hypothesis
and therefore triggering Hypothesis’ entry points for
test suites where Hypothesis is installed but not actually used (issue #3140 [https://github.com/HypothesisWorks/hypothesis/issues/3140]).

6.27.3 - 2021-11-28

This release fixes issue #3080 [https://github.com/HypothesisWorks/hypothesis/issues/3080], where from_type()
failed on unions containing PEP 585 [https://peps.python.org/pep-0585/] builtin generic types (like list[int])
in Python 3.9 and later.

6.27.2 - 2021-11-26

This patch makes the hypothesis codemod
command somewhat faster.

6.27.1 - 2021-11-22

This patch changes the backing datastructures of register_random()
and a few internal caches to use weakref.WeakValueDictionary [https://docs.python.org/3/library/weakref.html#weakref.WeakValueDictionary]. This reduces
memory usage and may improve performance when registered Random [https://docs.python.org/3/library/random.html#random.Random]
instances are only used for a subset of your tests (issue #3131 [https://github.com/HypothesisWorks/hypothesis/issues/3131]).

6.27.0 - 2021-11-22

This release teaches Hypothesis’ multiple-error reporting to format tracebacks
using pytest [https://pypi.org/project/pytest/] or better-exceptions [https://pypi.org/project/better-exceptions/], if they are installed and
enabled (issue #3116 [https://github.com/HypothesisWorks/hypothesis/issues/3116]).

6.26.0 - 2021-11-21

Did you know that of the 264 possible floating-point numbers,
253 of them are nan - and Python prints them all the same way?

While nans usually have all zeros in the sign bit and mantissa, this
isn’t always true [https://wingolog.org/archives/2011/05/18/value-representation-in-javascript-implementations],
and ‘signaling’ nans might trap or error [https://en.wikipedia.org/wiki/NaN#Signaling_NaN].
To help distinguish such errors in e.g. CI logs, Hypothesis now prints -nan for
negative nans, and adds a comment like # Saw 3 signaling NaNs if applicable.

6.25.0 - 2021-11-19

This release adds special filtering logic to make a few special cases
like s.map(lambda x: x) and lists().filter(len) more efficient
(issue #2701 [https://github.com/HypothesisWorks/hypothesis/issues/2701]).

6.24.6 - 2021-11-18

This patch makes floats() generate
“subnormal” floating point numbers [https://en.wikipedia.org/wiki/Subnormal_number]
more often, as these rare values can have strange interactions with
unsafe compiler optimisations like -ffast-math [https://simonbyrne.github.io/notes/fastmath/#flushing_subnormals_to_zero]
(issue #2976 [https://github.com/HypothesisWorks/hypothesis/issues/2976]).

6.24.5 - 2021-11-16

This patch fixes a rare internal error in the datetimes()
strategy, where the implementation of allow_imaginary=False crashed when checking
a time during the skipped hour of a DST transition if the DST offset is negative -
only true of Europe/Dublin, who we presume have their reasons - and the tzinfo
object is a pytz [https://pypi.org/project/pytz/] timezone (which predates PEP 495 [https://peps.python.org/pep-0495/]).

6.24.4 - 2021-11-15

This patch gives Hypothesis it’s own internal Random [https://docs.python.org/3/library/random.html#random.Random] instance,
ensuring that test suites which reset the global random state don’t induce
weird correlations between property-based tests (issue #2135 [https://github.com/HypothesisWorks/hypothesis/issues/2135]).

6.24.3 - 2021-11-13

This patch updates documentation of note()
(issue #3147 [https://github.com/HypothesisWorks/hypothesis/issues/3147]).

6.24.2 - 2021-11-05

This patch updates internal testing for the Array API extra
to be consistent with new specification changes: sum() not accepting
boolean arrays (#234 [https://github.com/data-apis/array-api/pull/234]),
unique() split into separate functions
(#275 [https://github.com/data-apis/array-api/pull/275]), and treating NaNs
as distinct (#310 [https://github.com/data-apis/array-api/pull/310]). It has
no user visible impact.

6.24.1 - 2021-11-01

This patch updates our vendored list of top-level domains [https://www.iana.org/domains/root/db],
which is used by the provisional domains() strategy.

6.24.0 - 2021-10-23

This patch updates our vendored list of top-level domains [https://data.iana.org/TLD/tlds-alpha-by-domain.txt], which is used
by the provisional domains() strategy.

(did you know that gTLDs can be both added [https://newgtlds.icann.org/en/]
and removed [https://www.icann.org/resources/pages/gtld-registry-agreement-termination-2015-10-09-en]?)

6.23.4 - 2021-10-20

This patch adds an error for when shapes in xps.arrays() is not
passed as either a valid shape or strategy.

6.23.3 - 2021-10-18

This patch updates our formatting with shed [https://pypi.org/project/shed/].

6.23.2 - 2021-10-08

This patch replaces external links to NumPy [https://numpy.org/doc/stable/index.html] API docs
with sphinx.ext.intersphinx [https://www.sphinx-doc.org/en/master/usage/extensions/intersphinx.html#module-sphinx.ext.intersphinx] cross-references. It is purely a documentation improvement.

6.23.1 - 2021-09-29

This patch cleans up internal logic for xps.arrays(). There is no
user-visible change.

6.23.0 - 2021-09-26

This release follows pytest [https://pypi.org/project/pytest/] in considering SystemExit [https://docs.python.org/3/library/exceptions.html#SystemExit] and
GeneratorExit [https://docs.python.org/3/library/exceptions.html#GeneratorExit] exceptions to be test failures, meaning that we will
shink to minimal examples and check for flakiness even though they subclass
BaseException [https://docs.python.org/3/library/exceptions.html#BaseException] directly (issue #2223 [https://github.com/HypothesisWorks/hypothesis/issues/2223]).

KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] continues to interrupt everything, and will be
re-raised immediately.

6.22.0 - 2021-09-24

This release adds LiveServerTestCase and
StaticLiveServerTestCase for django test.
Thanks to Ivan Tham for this feature!

6.21.6 - 2021-09-19

This patch fixes some new linter warnings such as flake8-bugbear [https://pypi.org/project/flake8-bugbear/]’s
B904 for explicit exception chaining, so tracebacks might be a bit nicer.

6.21.5 - 2021-09-16

This release fixes None being inferred as the float64 dtype in
from_dtype() and arrays() from the
Array API extra.

6.21.4 - 2021-09-16

This release fixes the type hint for the
@given() decorator
when decorating an async function (issue #3099 [https://github.com/HypothesisWorks/hypothesis/issues/3099]).

6.21.3 - 2021-09-15

This release improves Ghostwritten tests for builtins (issue #2977 [https://github.com/HypothesisWorks/hypothesis/issues/2977]).

6.21.2 - 2021-09-15

This release deprecates use of both min_dims > len(shape) and
max_dims > len(shape) when allow_newaxis == False in
basic_indices() (issue #3091 [https://github.com/HypothesisWorks/hypothesis/issues/3091]).

6.21.1 - 2021-09-13

This release improves the behaviour of builds()
and from_type() in certain situations involving
decorators (issue #2495 [https://github.com/HypothesisWorks/hypothesis/issues/2495] and issue #3029 [https://github.com/HypothesisWorks/hypothesis/issues/3029]).

6.21.0 - 2021-09-11

This release introduces strategies for array/tensor libraries adopting the
Array API standard [https://data-apis.org/] (issue #3037 [https://github.com/HypothesisWorks/hypothesis/issues/3037]).
They are available in the hypothesis.extra.array_api extra,
and work much like the existing strategies for NumPy.

6.20.1 - 2021-09-10

This patch fixes issue #961 [https://github.com/HypothesisWorks/hypothesis/issues/961], where calling given() inline on a
bound method would fail to handle the self argument correctly.

6.20.0 - 2021-09-09

This release allows slices() to generate step=None,
and fixes an off-by-one error where the start index could be equal to size.
This works fine for all Python sequences and Numpy arrays, but is undefined behaviour
in the Array API standard [https://data-apis.org/] (see pull request #3065 [https://github.com/HypothesisWorks/hypothesis/pull/3065]).

6.19.0 - 2021-09-08

This release makes stateful testing more likely to tell you
if you do something unexpected and unsupported:

	The return_value health check now applies to
rule() and initialize()
rules, if they don’t have target bundles, as well as
invariant().

	Using a consumes() bundle as a target is
deprecated, and will be an error in a future version.

If existing code triggers these new checks, check for related bugs and
misunderstandings - these patterns never had any effect.

6.18.0 - 2021-09-06

This release teaches from_type() a neat trick:
when resolving an typing.Annotated [https://docs.python.org/3/library/typing.html#typing.Annotated] type, if one of the annotations
is a strategy object we use that as the inferred strategy. For example:

PositiveInt = Annotated[int, st.integers(min_value=1)]

If there are multiple strategies, we use the last outer-most annotation.
See issue #2978 [https://github.com/HypothesisWorks/hypothesis/issues/2978] and pull request #3082 [https://github.com/HypothesisWorks/hypothesis/pull/3082] for discussion.

Requires Python 3.9 or later for
get_type_hints(..., include_extras=False) [https://docs.python.org/3/library/typing.html#typing.get_type_hints].

6.17.4 - 2021-08-31

This patch makes unique arrays() much more
efficient, especially when there are only a few valid elements - such as
for eight-bit integers (issue #3066 [https://github.com/HypothesisWorks/hypothesis/issues/3066]).

6.17.3 - 2021-08-30

This patch fixes the repr of array_shapes().

6.17.2 - 2021-08-30

This patch wraps some internal helper code in our proxies decorator to prevent
mutations of method docstrings carrying over to other instances of the respective
methods.

6.17.1 - 2021-08-29

This patch moves some internal helper code in preparation for issue #3065 [https://github.com/HypothesisWorks/hypothesis/issues/3065].
There is no user-visible change, unless you depended on undocumented internals.

6.17.0 - 2021-08-27

This release adds type annotations to the stateful testing API.

Thanks to Ruben Opdebeeck for this contribution!

6.16.0 - 2021-08-27

This release adds the DrawFn type as a reusable
type hint for the draw argument of
@composite functions.

Thanks to Ruben Opdebeeck for this contribution!

6.15.0 - 2021-08-22

This release emits a more useful error message when @given()
is applied to a coroutine function, i.e. one defined using async def (issue #3054 [https://github.com/HypothesisWorks/hypothesis/issues/3054]).

This was previously only handled by the generic return_value
health check, which doesn’t direct you to use either a custom executor
or a library such as pytest-trio [https://pypi.org/project/pytest-trio/] or pytest-asyncio [https://pypi.org/project/pytest-asyncio/] to handle it for you.

6.14.9 - 2021-08-20

This patch fixes a regression in Hypothesis 6.14.8, where from_type()
failed to resolve types which inherit from multiple parametrised generic types,
affecting the returns [https://pypi.org/project/returns/] package (issue #3060 [https://github.com/HypothesisWorks/hypothesis/issues/3060]).

6.14.8 - 2021-08-16

This patch ensures that registering a strategy for a subclass of a a parametrised
generic type such as class Lines(Sequence[str]): will not “leak” into unrelated
strategies such as st.from_type(Sequence[int]) (issue #2951 [https://github.com/HypothesisWorks/hypothesis/issues/2951]).
Unfortunately this fix requires PEP 560 [https://peps.python.org/pep-0560/], meaning Python 3.7 or later.

6.14.7 - 2021-08-14

This patch fixes issue #3050 [https://github.com/HypothesisWorks/hypothesis/issues/3050], where attrs [https://pypi.org/project/attrs/] classes could
cause an internal error in the ghostwriter.

6.14.6 - 2021-08-07

This patch improves the error message for issue #3016 [https://github.com/HypothesisWorks/hypothesis/issues/3016], where PEP 585 [https://peps.python.org/pep-0585/]
builtin generics with self-referential forward-reference strings cannot be
resolved to a strategy by from_type().

6.14.5 - 2021-07-27

This patch fixes hypothesis.strategies._internal.types.is_a_new_type.
It was failing on Python 3.10.0b4, where NewType is a function.

6.14.4 - 2021-07-26

This patch fixes from_type() and
register_type_strategy() for
typing.NewType [https://docs.python.org/3/library/typing.html#typing.NewType] on Python 3.10, which changed the
underlying implementation (see bpo-44353 [https://bugs.python.org/issue44353] for details).

6.14.3 - 2021-07-18

This patch updates our autoformatting tools, improving our code style without any API changes.

6.14.2 - 2021-07-12

This patch ensures that we shorten tracebacks for tests which fail due
to inconsistent data generation between runs (i.e. raise Flaky).

6.14.1 - 2021-07-02

This patch updates some internal type annotations.
There is no user-visible change.

6.14.0 - 2021-06-09

The explain phase now requires shrinking to be enabled,
and will be automatically skipped for deadline-exceeded errors.

6.13.14 - 2021-06-04

This patch improves the tuples() strategy
type annotations, to preserve the element types for up to length-five
tuples (issue #3005 [https://github.com/HypothesisWorks/hypothesis/issues/3005]).

As for one_of(), this is the best we can do
before a planned extension [https://mail.python.org/archives/list/typing-sig@python.org/thread/LOQFV3IIWGFDB7F5BDX746EZJG4VVBI3/]
to PEP 646 [https://peps.python.org/pep-0646/] is released, hopefully in Python 3.11.

6.13.13 - 2021-06-04

This patch teaches the Ghostwriter how to find
custom ufuncs [https://numpy.org/doc/stable/reference/ufuncs.html] from any module that defines them,
and that yaml.unsafe_load() does not undo yaml.safe_load().

6.13.12 - 2021-06-03

This patch reduces the amount of internal code excluded from our test suite’s
code coverage checks.

There is no user-visible change.

6.13.11 - 2021-06-02

This patch removes some old internal helper code that previously existed
to make Python 2 compatibility easier.

There is no user-visible change.

6.13.10 - 2021-05-30

This release adjusts some internal code to help make our test suite more
reliable.

There is no user-visible change.

6.13.9 - 2021-05-30

This patch cleans up some internal code related to filtering strategies.

There is no user-visible change.

6.13.8 - 2021-05-28

This patch slightly improves the performance of some internal code for
generating integers.

6.13.7 - 2021-05-27

This patch fixes a bug in from_regex() that
caused from_regex("", fullmatch=True) to unintentionally generate non-empty
strings (issue #4982 [https://github.com/HypothesisWorks/hypothesis/issues/4982]).

The only strings that completely match an empty regex pattern are empty
strings.

6.13.6 - 2021-05-26

This patch fixes a bug that caused integers()
to shrink towards negative values instead of positive values in some cases.

6.13.5 - 2021-05-24

This patch fixes rare cases where hypothesis write --binary-op could
print reproducing instructions from the internal
search for an identity element.

6.13.4 - 2021-05-24

This patch removes some unnecessary intermediate list-comprehensions,
using the latest versions of pyupgrade [https://pypi.org/project/pyupgrade/] and shed [https://pypi.org/project/shed/].

6.13.3 - 2021-05-23

This patch adds a .hypothesis property to invalid test functions, bringing
them inline with valid tests and fixing a bug where pytest-asyncio [https://pypi.org/project/pytest-asyncio/] would
swallow the real error message and mistakenly raise a version incompatibility
error.

6.13.2 - 2021-05-23

Some of Hypothesis’s numpy/pandas strategies use a fill argument to speed
up generating large arrays, by generating a single fill value and sharing that
value among many array slots instead of filling every single slot individually.

When no fill argument is provided, Hypothesis tries to detect whether it is
OK to automatically use the elements argument as a fill strategy, so that
it can still use the faster approach.

This patch fixes a bug that would cause that optimization to trigger in some
cases where it isn’t 100% guaranteed to be OK.

If this makes some of your numpy/pandas tests run more slowly, try adding an
explicit fill argument to the relevant strategies to ensure that Hypothesis
always uses the faster approach.

6.13.1 - 2021-05-20

This patch strengthens some internal import-time consistency checks for the
built-in strategies.

There is no user-visible change.

6.13.0 - 2021-05-18

This release adds URL fragment generation to the urls()
strategy (issue #2908 [https://github.com/HypothesisWorks/hypothesis/issues/2908]). Thanks to Pax (R. Margret) for contributing this patch at the
PyCon US Mentored Sprints [https://us.pycon.org/2021/summits/mentored-sprints/]!

6.12.1 - 2021-05-17

This patch fixes issue #2964 [https://github.com/HypothesisWorks/hypothesis/issues/2964], where .map() and .filter() methods
were omitted from the repr() of just() and
sampled_from() strategies, since
version 5.43.7.

6.12.0 - 2021-05-06

This release automatically rewrites some simple filters, such as
integers().filter(lambda x: x > 9) to the more efficient
integers(min_value=10), based on the AST of the predicate.

We continue to recommend using the efficient form directly wherever
possible, but this should be useful for e.g. pandera [https://pypi.org/project/pandera/] “Checks”
where you already have a simple predicate and translating manually
is really annoying. See issue #2701 [https://github.com/HypothesisWorks/hypothesis/issues/2701] for ideas about floats and
simple text strategies.

6.11.0 - 2021-05-06

hypothesis.target() now returns the observation value,
allowing it to be conveniently used inline in expressions such as
assert target(abs(a - b)) < 0.1.

6.10.1 - 2021-04-26

This patch fixes a deprecation warning if you’re using recent versions
of importlib-metadata [https://pypi.org/project/importlib-metadata/] (issue #2934 [https://github.com/HypothesisWorks/hypothesis/issues/2934]), which we use to load
third-party plugins such as Pydantic’s integration [https://pydantic-docs.helpmanual.io/hypothesis_plugin/].
On older versions of importlib-metadata [https://pypi.org/project/importlib-metadata/], there is no change and
you don’t need to upgrade.

6.10.0 - 2021-04-17

This release teaches the Ghostwriter to read parameter
types from Sphinx, Google, or Numpy-style structured docstrings, and improves
some related heuristics about how to test scientific and numerical programs.

6.9.2 - 2021-04-15

This release improves the Ghostwriter’s handling
of exceptions, by reading :raises ...: entries in function docstrings
and ensuring that we don’t suppresss the error raised by test assertions.

6.9.1 - 2021-04-12

This patch updates our autoformatting tools, improving our code style without any API changes.

6.9.0 - 2021-04-11

This release teaches from_type() how to see
through typing.Annotated [https://docs.python.org/3/library/typing.html#typing.Annotated]. Thanks to Vytautas Strimaitis
for reporting and fixing issue #2919 [https://github.com/HypothesisWorks/hypothesis/issues/2919]!

6.8.12 - 2021-04-11

If rich [https://pypi.org/project/rich/] is installed, the hypothesis write command
will use it to syntax-highlight the Ghostwritten
code.

6.8.11 - 2021-04-11

This patch improves an error message from builds()
when from_type() would be more suitable (issue #2930 [https://github.com/HypothesisWorks/hypothesis/issues/2930]).

6.8.10 - 2021-04-11

This patch updates the type annotations for arrays() to reflect that
shape: SearchStrategy[int] is supported.

6.8.9 - 2021-04-07

This patch fixes from_type() with
abstract types [https://docs.python.org/3/library/abc.html#module-abc] which have either required but
non-type-annotated arguments to __init__, or where
from_type() can handle some concrete
subclasses but not others.

6.8.8 - 2021-04-07

This patch teaches hypothesis write to check for possible roundtrips
in several more cases, such as by looking for an inverse in the module which
defines the function to test.

6.8.7 - 2021-04-07

This patch adds a more helpful error message if you try to call
sampled_from() on an Enum [https://docs.python.org/3/library/enum.html#enum.Enum]
which has no members, but does have dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass]-style
annotations (issue #2923 [https://github.com/HypothesisWorks/hypothesis/issues/2923]).

6.8.6 - 2021-04-06

The fixed_dictionaries() strategy now preserves
dict iteration order instead of sorting the keys. This also affects the
pretty-printing of keyword arguments to @given()
(issue #2913 [https://github.com/HypothesisWorks/hypothesis/issues/2913]).

6.8.5 - 2021-04-05

This patch teaches hypothesis write to default to ghostwriting
tests with --style=pytest only if pytest [https://pypi.org/project/pytest/] is installed, or
--style=unittest otherwise.

6.8.4 - 2021-04-01

This patch adds type annotations for the settings decorator,
to avoid an error when running mypy in strict mode.

6.8.3 - 2021-03-28

This patch improves the Ghostwriter’s handling
of strategies to generate various fiddly types including frozensets,
keysviews, valuesviews, regex matches and patterns, and so on.

6.8.2 - 2021-03-27

This patch fixes some internal typos. There is no user-visible change.

6.8.1 - 2021-03-14

This patch lays more groundwork for filter rewriting (issue #2701 [https://github.com/HypothesisWorks/hypothesis/issues/2701]).
There is no user-visible change… yet.

6.8.0 - 2021-03-11

This release registers the
remaining builtin types, and teaches from_type() to
try resolving ForwardRef [https://docs.python.org/3/library/typing.html#typing.ForwardRef] and Type [https://docs.python.org/3/library/typing.html#typing.Type]
references to built-in types.

6.7.0 - 2021-03-10

This release teaches RuleBasedStateMachine to avoid
checking invariant()s until all
initialize() rules have been run. You can enable checking
of specific invariants for incompletely initialized machines by using
@invariant(check_during_init=True) (issue #2868 [https://github.com/HypothesisWorks/hypothesis/issues/2868]).

In previous versions, it was possible if awkward to implement this behaviour
using precondition() and an auxiliary variable.

6.6.1 - 2021-03-09

This patch improves the error message when from_type()
fails to resolve a forward-reference inside a typing.Type [https://docs.python.org/3/library/typing.html#typing.Type]
such as Type["int"] (issue #2565 [https://github.com/HypothesisWorks/hypothesis/issues/2565]).

6.6.0 - 2021-03-07

This release makes it an explicit error to apply invariant()
to a rule() or initialize() rule
in stateful testing. Such a combination had unclear semantics,
especially in combination with precondition(), and was never
meant to be allowed (issue #2681 [https://github.com/HypothesisWorks/hypothesis/issues/2681]).

6.5.0 - 2021-03-07

This release adds the explain phase, in which Hypothesis
attempts to explain why your test failed by pointing to suspicious lines
of code (i.e. those which were always, and only, run on failing inputs).
We plan to include “generalising” failing examples in this phase in a
future release (issue #2192 [https://github.com/HypothesisWorks/hypothesis/issues/2192]).

6.4.3 - 2021-03-04

This patch fixes issue #2794 [https://github.com/HypothesisWorks/hypothesis/issues/2794], where nesting deferred()
strategies within recursive() strategies could
trigger an internal assertion. While it was always possible to get the same
results from a more sensible strategy, the convoluted form now works too.

6.4.2 - 2021-03-04

This patch fixes several problems with mypy when –no-implicit-reexport [https://mypy.readthedocs.io/en/stable/command_line.html#cmdoption-mypy-no-implicit-reexport] was activated in user projects.

Thanks to Nikita Sobolev for fixing issue #2884 [https://github.com/HypothesisWorks/hypothesis/issues/2884]!

6.4.1 - 2021-03-04

This patch fixes an exception that occurs when using type unions of
the typing_extensions [https://pypi.org/project/typing_extensions/] Literal backport on Python 3.6.

Thanks to Ben Anhalt for identifying and fixing this bug.

6.4.0 - 2021-03-02

This release fixes stateful testing methods with multiple
precondition() decorators. Previously, only the
outer-most precondition was checked (issue #2681 [https://github.com/HypothesisWorks/hypothesis/issues/2681]).

6.3.4 - 2021-02-28

This patch refactors some internals of RuleBasedStateMachine.
There is no change to the public API or behaviour.

6.3.3 - 2021-02-26

This patch moves some internal code, so that future work can avoid
creating import cycles. There is no user-visible change.

6.3.2 - 2021-02-25

This patch enables register_type_strategy() for subclasses of
typing.TypedDict [https://docs.python.org/3/library/typing.html#typing.TypedDict]. Previously, from_type()
would ignore the registered strategy (issue #2872 [https://github.com/HypothesisWorks/hypothesis/issues/2872]).

Thanks to Ilya Lebedev for identifying and fixing this bug!

6.3.1 - 2021-02-24

This release lays the groundwork for automatic rewriting of simple filters,
for example converting integers().filter(lambda x: x > 9) to
integers(min_value=10).

Note that this is not supported yet, and we will continue to recommend
writing the efficient form directly wherever possible - predicate rewriting
is provided mainly for the benefit of downstream libraries which would
otherwise have to implement it for themselves (e.g. pandera [https://pypi.org/project/pandera/] and
icontract-hypothesis [https://pypi.org/project/icontract-hypothesis/]). See issue #2701 [https://github.com/HypothesisWorks/hypothesis/issues/2701] for details.

6.3.0 - 2021-02-20

The Hypothesis pytest [https://pypi.org/project/pytest/] plugin now requires pytest version 4.6 or later.
If the plugin detects an earlier version of pytest, it will automatically
deactivate itself.

(4.6.x is the earliest pytest branch that still accepts community bugfixes.) [https://docs.pytest.org/en/stable/py27-py34-deprecation.html]

Hypothesis-based tests should continue to work in earlier versions of
pytest, but enhanced integrations provided by the plugin
(such as --hypothesis-show-statistics and other command-line flags)
will no longer be available in obsolete pytest versions.

6.2.0 - 2021-02-12

If you use pytest-html [https://pypi.org/project/pytest-html/], Hypothesis now includes the
summary statistics for each test in the HTML report,
whether or not the --hypothesis-show-statistics argument was passed
to show them in the command-line output.

6.1.1 - 2021-01-31

This patch updates our automatic code formatting to use shed [https://pypi.org/project/shed/],
which includes autoflake [https://pypi.org/project/autoflake/], black [https://pypi.org/project/black/], isort [https://pypi.org/project/isort/], and
pyupgrade [https://pypi.org/project/pyupgrade/] (issue #2780 [https://github.com/HypothesisWorks/hypothesis/issues/2780]).

6.1.0 - 2021-01-29

This release teaches Hypothesis to distinguish between errors based on the
__cause__ or __context__ of otherwise identical exceptions [https://docs.python.org/3/library/exceptions.html], which is particularly
useful when internal errors can be wrapped by a library-specific or semantically
appropriate exception such as:

try:
 do_the_thing(foo, timeout=10)
except Exception as err:
 raise FooError("Failed to do the thing") from err

Earlier versions of Hypothesis only see the FooError, while we can now
distinguish a FooError raised because of e.g. an internal assertion from
one raised because of a TimeoutExceeded exception.

6.0.4 - 2021-01-27

This release prevents a race condition inside recursive() strategies.
The race condition occurs when the same recursive() strategy is shared among tests
that are running in multiple threads (issue #2717 [https://github.com/HypothesisWorks/hypothesis/issues/2717]).

6.0.3 - 2021-01-23

This patch improves the type annotations for one_of(),
by adding overloads to handle up to five distinct arguments as
Union [https://docs.python.org/3/library/typing.html#typing.Union] before falling back to Any [https://docs.python.org/3/library/typing.html#typing.Any],
as well as annotating the | (__or__) operator for strategies (issue #2765 [https://github.com/HypothesisWorks/hypothesis/issues/2765]).

6.0.2 - 2021-01-14

This release makes some small improvements to how filtered strategies work. It should improve the performance of shrinking filtered strategies,
and may under some (probably rare) circumstances improve the diversity of generated examples.

6.0.1 - 2021-01-13

This patch fixes an interaction where our test statistics
handling made Pytest’s --junit-xml output fail to validate against the
strict xunit2 schema (issue #1975 [https://github.com/HypothesisWorks/hypothesis/issues/1975]).

6.0.0 - 2021-01-08

Welcome to the next major version of Hypothesis!

There are no new features here, as we release those in minor versions.
Instead, 6.0 is a chance for us to remove deprecated features (many already
converted into no-ops), and turn a variety of warnings into errors.

If you were running on the last version of Hypothesis 5.x without any
Hypothesis deprecation warnings, this will be a very boring upgrade.
In fact, nothing will change for you at all.

Changes

	Many functions now use PEP 3102 [https://peps.python.org/pep-3102/] keyword-only arguments where passing positional
arguments was deprecated since 5.5.

	hypothesis.extra.django.from_model() no longer accepts model as a
keyword argument, where it could conflict with fields named “model”.

	randoms() now defaults to use_true_random=False.

	complex_numbers() no longer accepts
min_magnitude=None; either use min_magnitude=0 or just omit the argument.

	hypothesis.provisional.ip4_addr_strings and ip6_addr_strings are removed
in favor of ip_addresses(v=...).map(str).

	register_type_strategy() no longer accepts generic
types with type arguments, which were always pretty badly broken.

	Using function-scoped pytest fixtures is now a health-check error, instead of a warning.

Tip

The hypothesis codemod command can automatically refactor your code,
particularly to convert positional to keyword arguments where those are now
required.

Hypothesis 5.x

5.49.0 - 2021-01-07

This release adds the
function_scoped_fixture health check value,
which can be used to suppress the existing warning that appears when
@given is applied to a test that uses pytest
function-scoped fixtures.

(This warning exists because function-scoped fixtures only run once per
function, not once per example, which is usually unexpected and can cause
subtle problems.)

When this warning becomes a health check error in a future release, suppressing
it via Python warning settings will no longer be possible.
In the rare case that once-per-function behaviour is intended, it will still be
possible to use function_scoped_fixture to
opt out of the health check error for specific tests.

5.48.0 - 2021-01-06

This release adds hypothesis.currently_in_test_context(), which can be used
to check whether the calling code is currently running inside an
@given or stateful test.

This is most useful for third-party integrations and assertion helpers which may
wish to use assume() or target(), without also
requiring that the helper only be used from property-based tests (issue #2581 [https://github.com/HypothesisWorks/hypothesis/issues/2581]).

5.47.0 - 2021-01-05

This release upgrades the import logic for ghostwritten tests,
handling many cases where imports would previously be missing or from unexpected
locations.

5.46.0 - 2021-01-04

This release upgrades from_type(), to infer
strategies for type-annotated arguments even if they have defaults when
it otherwise falls back to builds()
(issue #2708 [https://github.com/HypothesisWorks/hypothesis/issues/2708]).

5.45.0 - 2021-01-04

This release adds the hypothesis[codemods] extra, which you can use to
check for and automatically fix issues such as use of deprecated
Hypothesis APIs (issue #2705 [https://github.com/HypothesisWorks/hypothesis/issues/2705]).

5.44.0 - 2021-01-03

This patch fixes from_type() with
the typing_extensions [https://pypi.org/project/typing_extensions/] Literal backport on Python 3.6.

5.43.9 - 2021-01-02

This patch fixes issue #2722 [https://github.com/HypothesisWorks/hypothesis/issues/2722], where certain orderings of
register_type_strategy(),
ForwardRef [https://docs.python.org/3/library/typing.html#typing.ForwardRef], and from_type()
could trigger an internal error.

5.43.8 - 2021-01-02

This patch makes some strategies for collections with a uniqueness constraint
much more efficient, including dictionaries(keys=sampled_from(...), values=..)
and lists(tuples(sampled_from(...), ...), unique_by=lambda x: x[0]).
(related to issue #2036 [https://github.com/HypothesisWorks/hypothesis/issues/2036])

5.43.7 - 2021-01-02

This patch extends our faster special case for
sampled_from() elements in unique
lists() to account for chains of
.map(...) and .filter(...) calls (issue #2036 [https://github.com/HypothesisWorks/hypothesis/issues/2036]).

5.43.6 - 2021-01-02

This patch improves the type annotations on assume()
and @reproduce_failure().

5.43.5 - 2021-01-01

This patch updates our copyright headers to include 2021. Happy new year!

5.43.4 - 2020-12-24

This change fixes a documentation error in the
database setting.

The previous documentation suggested that callers could specify a database
path string, or the special string ":memory:", but this setting has
never actually allowed string arguments.

Permitted values are None, and instances of
ExampleDatabase.

5.43.3 - 2020-12-11

This patch fixes issue #2696 [https://github.com/HypothesisWorks/hypothesis/issues/2696], an internal error triggered when the
@example decorator was used and the
verbosity setting was quiet.

5.43.2 - 2020-12-10

This patch improves the error message from the
data_frames() strategy when both the rows
and columns arguments are given, but there is a missing entry in rows
and the corresponding column has no fill value (issue #2678 [https://github.com/HypothesisWorks/hypothesis/issues/2678]).

5.43.1 - 2020-12-10

This patch improves the error message if builds()
is passed an Enum [https://docs.python.org/3/library/enum.html#enum.Enum] which cannot be called without arguments,
to suggest using sampled_from() (issue #2693 [https://github.com/HypothesisWorks/hypothesis/issues/2693]).

5.43.0 - 2020-12-09

This release adds new timezones() and
timezone_keys() strategies (issue #2630 [https://github.com/HypothesisWorks/hypothesis/issues/2630])
based on the new zoneinfo [https://docs.python.org/3/library/zoneinfo.html#module-zoneinfo] module in Python 3.9.

pip install hypothesis[zoneinfo] will ensure that you have the
appropriate backports installed if you need them.

5.42.3 - 2020-12-09

This patch fixes an internal error in datetimes()
with allow_imaginary=False where the timezones argument can generate
tzinfo=None (issue #2662 [https://github.com/HypothesisWorks/hypothesis/issues/2662]).

5.42.2 - 2020-12-09

This patch teaches hypothesis.extra.django.from_field() to infer
more efficient strategies by inspecting (not just filtering by) field
validators for numeric and string fields (issue #1116 [https://github.com/HypothesisWorks/hypothesis/issues/1116]).

5.42.1 - 2020-12-09

This patch refactors hypothesis.settings to use type-annotated
keyword arguments instead of **kwargs, which makes tab-completion
much more useful - as well as type-checkers like mypy [https://pypi.org/project/mypy/].

5.42.0 - 2020-12-09

This patch teaches the magic() ghostwriter
to recognise “en/de” function roundtrips other than the common encode/decode
pattern, such as encrypt/decrypt or, encipher/decipher.

5.41.5 - 2020-12-05

This patch adds a performance optimisation to avoid saving redundant
seeds when using the .fuzz_one_input hook.

5.41.4 - 2020-11-28

This patch fixes issue #2657 [https://github.com/HypothesisWorks/hypothesis/issues/2657], where passing unicode patterns compiled with
re.IGNORECASE [https://docs.python.org/3/library/re.html#re.IGNORECASE] to from_regex() could
trigger an internal error when casefolding a character creates a longer string
(e.g. "\u0130".lower() -> "i\u0370").

5.41.3 - 2020-11-18

This patch adds a final fallback clause to our plugin logic
to fail with a warning rather than error on Python < 3.8 when neither the
importlib_metadata [https://pypi.org/project/importlib_metadata/] (preferred) or setuptools [https://pypi.org/project/setuptools/] (fallback)
packages are available.

5.41.2 - 2020-11-08

This patch fixes urls() strategy ensuring that
~ (tilde) is treated as one of the url-safe characters (issue #2658 [https://github.com/HypothesisWorks/hypothesis/issues/2658]).

5.41.1 - 2020-11-03

This patch improves our CLI help and documentation.

5.41.0 - 2020-10-30

Hypothesis now shrinks examples where the error is raised while drawing from
a strategy. This makes complicated custom strategies much easier to debug,
at the cost of a slowdown for use-cases where you catch and ignore such errors.

5.40.0 - 2020-10-30

This release teaches from_type() how to handle
ChainMap [https://docs.python.org/3/library/typing.html#typing.ChainMap], Counter [https://docs.python.org/3/library/typing.html#typing.Counter],
Deque [https://docs.python.org/3/library/typing.html#typing.Deque], Generator [https://docs.python.org/3/library/typing.html#typing.Generator],
Match [https://docs.python.org/3/library/typing.html#typing.Match], OrderedDict [https://docs.python.org/3/library/typing.html#typing.OrderedDict],
Pattern [https://docs.python.org/3/library/typing.html#typing.Pattern], and Set [https://docs.python.org/3/library/collections.abc.html#collections.abc.Set]
(issue #2654 [https://github.com/HypothesisWorks/hypothesis/issues/2654]).

5.39.0 - 2020-10-30

from_type() now knows how to resolve PEP 585 [https://peps.python.org/pep-0585/]
parameterized standard collection types, which are new in Python 3.9
(issue #2629 [https://github.com/HypothesisWorks/hypothesis/issues/2629]).

5.38.1 - 2020-10-26

This patch fixes builds(), so that when passed
infer for an argument with a non-Optional [https://docs.python.org/3/library/typing.html#typing.Optional]
type annotation and a default value of None to build a class which defines
an explicit __signature__ attribute, either None or that type may be
generated.

This is unlikely to happen unless you are using pydantic [https://pypi.org/project/pydantic/] (issue #2648 [https://github.com/HypothesisWorks/hypothesis/issues/2648]).

5.38.0 - 2020-10-24

This release improves our support for @st.composite
on a classmethod [https://docs.python.org/3/library/functions.html#classmethod] or staticmethod [https://docs.python.org/3/library/functions.html#staticmethod] (issue #2578 [https://github.com/HypothesisWorks/hypothesis/issues/2578]).

5.37.5 - 2020-10-24

This patch fixes from_type() with
Iterable[T] [https://docs.python.org/3/library/typing.html#typing.Iterable] (issue #2645 [https://github.com/HypothesisWorks/hypothesis/issues/2645]).

5.37.4 - 2020-10-20

This patch teaches the magic() ghostwriter
to recognise that pairs of functions like rgb_to_hsv() [https://docs.python.org/3/library/colorsys.html#colorsys.rgb_to_hsv]
and hsv_to_rgb() [https://docs.python.org/3/library/colorsys.html#colorsys.hsv_to_rgb] should
roundtrip().

5.37.3 - 2020-10-15

This patch improves builds() and
from_type() support for explicitly defined __signature__
attributes, from version 5.8.3, to support generic types from the
typing [https://docs.python.org/3/library/typing.html#module-typing] module.

Thanks to Rónán Carrigan for identifying and fixing this problem!

5.37.2 - 2020-10-14

This patch fixes from_lark() with version
0.10.1+ of the lark-parser [https://pypi.org/project/lark-parser/] package.

5.37.1 - 2020-10-07

This patch fixes some broken links in the lark
extra documentation.

5.37.0 - 2020-10-03

This release adds a new RedisExampleDatabase,
along with the ReadOnlyDatabase
and MultiplexedDatabase helpers, to support
team workflows where failing examples can be seamlessly shared between everyone
on the team - and your CI servers or buildbots.

5.36.2 - 2020-10-02

This patch ensures that if the “hypothesis” entry point
is callable, we call it after importing it. You can still use non-callable
entry points (like modules), which are only imported.

We also prefer importlib.metadata [https://docs.python.org/3/library/importlib.metadata.html]
or the backport [https://pypi.org/project/importlib_metadata/] over pkg_resources [https://setuptools.readthedocs.io/en/latest/pkg_resources.html],
which makes import hypothesis around 200 milliseconds faster
(issue #2571 [https://github.com/HypothesisWorks/hypothesis/issues/2571]).

5.36.1 - 2020-09-25

This patch adds some helpful suggestions to error messages you might see
while learning to use the @example() decorator
(issue #2611 [https://github.com/HypothesisWorks/hypothesis/issues/2611]) or the one_of() strategy.

5.36.0 - 2020-09-24

This release upgrades the from_dtype() strategy
to pass optional **kwargs to the inferred strategy, and upgrades the
arrays() strategy to accept an elements=kwargs
dict to pass through to from_dtype().

arrays(floating_dtypes(), shape, elements={"min_value": -10, "max_value": 10})
is a particularly useful pattern, as it allows for any floating dtype without
triggering the roundoff warning for smaller types or sacrificing variety for
larger types (issue #2552 [https://github.com/HypothesisWorks/hypothesis/issues/2552]).

5.35.4 - 2020-09-21

This patch reformats our code with the latest black [https://pypi.org/project/black/] to
take advantage of the support for magic trailing commas.

5.35.3 - 2020-09-15

This release significantly improves the performance of Hypothesis’s internal
implementation of automaton learning. However this code does not run as part
of the user-accessible API so this has no user-visible impact.

5.35.2 - 2020-09-14

This patch ensures that, when the generate phases
is disabled, we can replay up to max_examples examples
from the database - which is very useful when
using Hypothesis with a fuzzer.

Thanks to Afrida Tabassum for fixing issue #2585 [https://github.com/HypothesisWorks/hypothesis/issues/2585]!

5.35.1 - 2020-09-14

This patch changes some internal struct.Struct.format [https://docs.python.org/3/library/struct.html#struct.Struct.format] strings
from bytes to str, to avoid BytesWarning [https://docs.python.org/3/library/exceptions.html#BytesWarning] when running
python -bb [https://docs.python.org/3/using/cmdline.html#cmdoption-b].

Thanks to everyone involved in pytest-xdist issue 596 [https://github.com/pytest-dev/pytest-xdist/issues/596],
bpo-16349 [https://bugs.python.org/issue16349], bpo-21071 [https://bugs.python.org/issue21071], and bpo-41777 [https://bugs.python.org/issue41777] for their work on this -
it was a remarkably subtle issue!

5.35.0 - 2020-09-11

The target() function now accepts integers as well as floats.

5.34.1 - 2020-09-11

This patch adds explicit Optional [https://docs.python.org/3/library/typing.html#typing.Optional] annotations to our public API,
to better support users who run mypy [https://pypi.org/project/mypy/] with --strict or no_implicit_optional=True.

Thanks to Krzysztof Przybyła for bringing this to our attention and writing the patch!

5.34.0 - 2020-09-11

This release drops support for Python 3.5, which reached end of life upstream [https://devguide.python.org/#status-of-python-branches] on 2020-09-13.

5.33.2 - 2020-09-09

This patch fixes a problem with builds() that was not able to
generate valid data for annotated classes with constructors.

Thanks to Nikita Sobolev for fixing issue #2603 [https://github.com/HypothesisWorks/hypothesis/issues/2603]!

5.33.1 - 2020-09-07

This patch improves the error message from the hypothesis write
command if black [https://pypi.org/project/black/] (required for the ghostwriter)
is not installed.

Thanks to Nikita Sobolev for fixing issue #2604 [https://github.com/HypothesisWorks/hypothesis/issues/2604]!

5.33.0 - 2020-09-06

When reporting failing examples, or tried examples in verbose mode, Hypothesis now
identifies which were from @example(...) explicit examples.

5.32.1 - 2020-09-06

This patch contains some internal refactoring.
Thanks to Felix Sheldon for fixing issue #2516 [https://github.com/HypothesisWorks/hypothesis/issues/2516]!

5.32.0 - 2020-09-04

An array drawn from arrays() will own its own memory; previously most arrays returned by
this strategy were views.

5.31.0 - 2020-09-04

builds() will use the __signature__ attribute of
the target, if it exists, to retrieve type hints.
Previously typing.get_type_hints() [https://docs.python.org/3/library/typing.html#typing.get_type_hints], was used by default.
If argument names varied between the __annotations__ and __signature__,
they would not be supplied to the target.

This was particularly an issue for pydantic [https://pypi.org/project/pydantic/] models which use an
alias generator [https://pydantic-docs.helpmanual.io/usage/model_config/#alias-generator].

5.30.1 - 2020-09-04

This patch makes the ghostwriter much more robust when
passed unusual modules.

	improved support for non-resolvable type annotations

	magic() can now write
equivalent() tests

	running magic() on modules where some
names in __all__ are undefined skips such names, instead of raising an error

	magic() now knows to skip mocks

	improved handling of import-time errors found by the ghostwriter CLI

5.30.0 - 2020-08-30

register_type_strategy() now supports
typing.TypeVar [https://docs.python.org/3/library/typing.html#typing.TypeVar], which was previously hard-coded, and allows a
variety of types to be generated for an unconstrained TypeVar [https://docs.python.org/3/library/typing.html#typing.TypeVar]
instead of just text().

Thanks again to Nikita Sobolev for all your work on advanced types!

5.29.4 - 2020-08-28

This release fixes some hard to trigger bugs in Hypothesis’s automata learning
code. This code is only run as part of the Hypothesis build process, and not
for user code, so this release has no user visible impact.

5.29.3 - 2020-08-27

This patch adds type annotations to the hypothesis.database
module. There is no runtime change, but your typechecker might notice.

5.29.2 - 2020-08-27

This patch tracks some additional information in Hypothesis internals,
and has no user-visible impact.

5.29.1 - 2020-08-27

This release fixes a bug in some Hypothesis internal support code for learning
automata. This mostly doesn’t have any user visible impact, although it slightly
affects the learned shrink passes so shrinking may be subtly different.

5.29.0 - 2020-08-24

This release adds support for Hypothesis integration via setuptools entry points, which allows for smoother
integration of third-party Hypothesis extensions and external libraries.
Unless you’re publishing a library with Hypothesis integration, you’ll
probably only ever use this indirectly!

5.28.0 - 2020-08-24

from_type() can now resolve TypeVar [https://docs.python.org/3/library/typing.html#typing.TypeVar]
instances when the bound is a ForwardRef [https://docs.python.org/3/library/typing.html#typing.ForwardRef], so long as that name
is in fact defined in the same module as the typevar (no TYPE_CHECKING tricks, sorry).
This feature requires Python 3.7 or later.

Thanks to Zac Hatfield-Dodds and Nikita Sobolev for this feature!

5.27.0 - 2020-08-20

This patch adds two new ghostwriters to test
binary operations [https://en.wikipedia.org/wiki/Binary_operation], like operator.add() [https://docs.python.org/3/library/operator.html#operator.add],
and Numpy ufuncs [https://numpy.org/doc/stable/reference/ufuncs.html] and gufuncs [https://numpy.org/doc/stable/reference/c-api/generalized-ufuncs.html] like np.matmul() [https://numpy.org/doc/stable/reference/generated/numpy.matmul.html#numpy.matmul].

5.26.1 - 2020-08-19

This release improves the performance of some methods in Hypothesis’s internal
automaton library. These are currently only lightly used by user code, but
this may result in slightly faster shrinking.

5.26.0 - 2020-08-17

register_type_strategy() no longer accepts
parametrised user-defined generic types, because the resolution logic
was quite badly broken (issue #2537 [https://github.com/HypothesisWorks/hypothesis/issues/2537]).

Instead of registering a strategy for e.g. MyCollection[int], you
should register a function for MyCollection and inspect the type
parameters within that function [https://stackoverflow.com/q/48572831].

Thanks to Nikita Sobolev for the bug report, design assistance, and
pull request to implement this feature!

5.25.0 - 2020-08-16

Tired of writing tests? Or new to Hypothesis and not sure where to start?

This release is for you! With our new Ghostwriter functions
and hypothesis write ... command-line interface,
you can stop writing tests entirely… or take the source code Hypothesis
writes for you as a starting point.

This has been in the works for months, from issue #2118 [https://github.com/HypothesisWorks/hypothesis/issues/2118] to versions
5.18.3, 5.23.5, and 5.23.5 -
particular thanks to the many people who reviewed pull requests or commented on
demos, and to Timothy Crosley’s hypothesis-auto [https://pypi.org/project/hypothesis-auto/] project for inspiration.

5.24.4 - 2020-08-14

This patch adds yet more internal functions to support a new feature
we’re working on, like version 5.18.3 and
version 5.23.6. We promise it’s worth the wait!

5.24.3 - 2020-08-13

This release fixes a small internal bug in Hypothesis’s internal automaton library.
Fortunately this bug was currently impossible to hit in user facing code, so this
has no user visible impact.

5.24.2 - 2020-08-12

This release improves shrink quality by allowing Hypothesis to automatically learn new shrink passes
for difficult to shrink tests.

The automatic learning is not currently accessible in user code (it still needs significant work
on robustness and performance before it is ready for that), but this release includes learned
passes that should improve shrinking quality for tests which use any of the
text(), floats(),
datetimes(), emails(),
and complex_numbers() strategies.

5.24.1 - 2020-08-12

This patch updates some docstrings, without changing runtime behaviour.

5.24.0 - 2020-08-10

The functions() strategy has a new argument
pure=True, which ensures that the same return value is generated for
identical calls to the generated function (issue #2538 [https://github.com/HypothesisWorks/hypothesis/issues/2538]).

Thanks to Zac Hatfield-Dodds and Nikita Sobolev for this feature!

5.23.12 - 2020-08-10

This release removes a number of Hypothesis’s internal “shrink passes” - transformations
it makes to a generated test case during shrinking - which appeared to be redundant with
other transformations.

It is unlikely that you will see much impact from this. If you do, it will likely show up
as a change in shrinking performance (probably slower, maybe faster), or possibly in
worse shrunk results. If you encounter the latter, please let us know.

5.23.11 - 2020-08-04

This release fixes a bug in some internal Hypothesis support code. It has no user visible impact.

5.23.10 - 2020-08-04

This release improves the quality of shrunk test cases in some special cases.
Specifically, it should get shrinking unstuck in some scenarios which require
simultaneously changing two parts of the generated test case.

5.23.9 - 2020-08-03

This release improves the performance of some internal support code. It has no user visible impact,
as that code is not currently run during normal Hypothesis operation.

5.23.8 - 2020-07-31

This release adds a heuristic to detect when shrinking has finished despite the fact
that there are many more possible transformations to try. This will be particularly
useful for tests where the minimum failing test case is very large despite there being
many smaller test cases possible, where it is likely to speed up shrinking dramatically.

In some cases it is likely that this will result in worse shrunk test cases. In those
cases rerunning the test will result in further shrinking.

5.23.7 - 2020-07-29

This release makes some performance improvements to shrinking. They should
only be noticeable for tests that are currently particularly slow to shrink.

5.23.6 - 2020-07-29

This patch adds some more internal functions to support a new
feature we’re working on, like version 5.18.3.
There is still no user-visible change… yet.

5.23.5 - 2020-07-29

This release makes some changes to internal support code that is not currently used in production Hypothesis.
It has no user visible effect at present.

5.23.4 - 2020-07-29

This release improves shrinking quality in some special cases.

5.23.3 - 2020-07-27

This release fixes issue #2507 [https://github.com/HypothesisWorks/hypothesis/issues/2507], where lazy evaluation meant that the
values drawn from a sampled_from() strategy
could depend on mutations of the sampled sequence that happened after
the strategy was constructed.

5.23.2 - 2020-07-27

This patch fixes issue #2462 [https://github.com/HypothesisWorks/hypothesis/issues/2462], a bug in our handling of unittest.TestCase.subTest() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.subTest].
Thanks to Israel Fruchter for fixing this at the EuroPython sprints!

5.23.1 - 2020-07-26

This release improves the behaviour of the characters() strategy
when shrinking, by changing which characters are considered smallest to prefer more “normal” ascii characters
where available.

5.23.0 - 2020-07-26

The default print_blob setting is now smarter. It defaults to True in CI and
False for local development.

Thanks to Hugo van Kemenade for implementing this feature at the EuroPython sprints!

5.22.0 - 2020-07-25

The slices() strategy can now generate slices for empty sequences,
slices with negative start and stop indices (from the end of the sequence),
and step=None in place of step=1.

Thanks to Sangarshanan for implementing this feature at the EuroPython sprints!

5.21.0 - 2020-07-23

This release ensures that tests which raise RecursionError are not
reported as flaky simply because we run them from different initial
stack depths (issue #2494 [https://github.com/HypothesisWorks/hypothesis/issues/2494]).

5.20.4 - 2020-07-23

This release improves the performance of the sample method on objects obtained from randoms()
when use_true_random=False. This should mostly only be noticeable when the sample size is a large fraction of the population size,
but may also help avoid health check failures in some other cases.

5.20.3 - 2020-07-21

This release makes some internal changes for testing purposes and should have no user visible effect.

5.20.2 - 2020-07-18

This release fixes a small caching bug in Hypothesis internals that may under
some circumstances have resulted in a less diverse set of test cases being
generated than was intended.

Fixing this problem revealed some performance problems that could occur during targeted property based testing, so this release also fixes those. Targeted property-based testing should now be significantly faster in some cases,
but this may be at the cost of reduced effectiveness.

5.20.1 - 2020-07-17

This patch updates our formatting to use isort [https://pypi.org/project/isort/] 5.
There is no user-visible change.

5.20.0 - 2020-07-17

The basic_indices() strategy can now generate
bare indexers in place of length-one tuples. Thanks to Andrea for this patch!

5.19.3 - 2020-07-15

This patch removes an internal use of distutils in order to avoid
this setuptools warning [https://github.com/pypa/setuptools/issues/2261]
for some users.

5.19.2 - 2020-07-13

This patch contains a small internal refactoring with no user-visible impact.

Thanks to Andrea for writing this at
the SciPy 2020 Sprints [https://www.scipy2020.scipy.org/sprints-schedule]!

5.19.1 - 2020-07-12

This release slightly improves shrinking behaviour. This should mainly only
impact stateful tests, but may have some minor positive impact on shrinking
collections (lists, sets, etc).

5.19.0 - 2020-06-30

This release improves the randoms() strategy by adding support
for Random instances where Hypothesis generates the random values
rather than having them be “truly” random.

5.18.3 - 2020-06-27

This patch adds some internal functions to support a new feature
we’re working on. There is no user-visible change… yet.

5.18.2 - 2020-06-26

This patch improves our docs for the derandomize setting.

5.18.1 - 2020-06-25

This release consists of some internal refactoring to the shrinker in preparation for future work. It has no user visible impact.

5.18.0 - 2020-06-22

This release teaches Hypothesis to shorten tracebacks for
explicit examples, as we already do
for generated examples, so that you can focus on your code rather than ours.

If you have multiple failing explicit examples, they will now all be reported.
To report only the first failure, you can use the report_multiple_bugs=False setting as for generated examples.

5.17.0 - 2020-06-22

This patch adds strategy inference for the Literal, NewType, Type,
DefaultDict, and TypedDict types from the typing_extensions [https://pypi.org/project/typing_extensions/]
backport on PyPI.

5.16.3 - 2020-06-21

This patch precomputes some of the setup logic for our
external fuzzer integration and sets
deadline=None in fuzzing mode,
saving around 150us on each iteration.

This is around two-thirds the runtime to fuzz an empty test with
@given(st.none()), and nice to have even as a much smaller
fraction of the runtime for non-trivial tests.

5.16.2 - 2020-06-19

This patch fixes an internal error when warning about the use of function-scoped fixtures
for parametrised tests where the parametrised value contained a % character.
Thanks to Bryant for reporting and fixing this bug!

5.16.1 - 2020-06-10

If you pass a list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] where a
strategy was expected, the error message now mentions
sampled_from() as an example strategy.

Thanks to the enthusiastic participants in the PyCon Mentored Sprints [https://us.pycon.org/2020/hatchery/mentoredsprints/] who suggested
adding this hint.

5.16.0 - 2020-05-27

functions() can now infer the appropriate returns
strategy if you pass a like function with a return-type annotation. Before,
omitting the returns argument would generate functions that always returned None.

5.15.1 - 2020-05-21

Fix from_type() with generic types under Python 3.9.

5.15.0 - 2020-05-19

This patch fixes an error that happens when multiple threads create new strategies.

5.14.0 - 2020-05-13

Passing min_magnitude=None to complex_numbers() is now
deprecated - you can explicitly pass min_magnitude=0, or omit the argument entirely.

5.13.1 - 2020-05-13

This patch fixes an internal error in from_type()
for typing.NamedTuple [https://docs.python.org/3/library/typing.html#typing.NamedTuple] in Python 3.9. Thanks to Michel Salim
for reporting and fixing issue #2427 [https://github.com/HypothesisWorks/hypothesis/issues/2427]!

5.13.0 - 2020-05-12

This release upgrades the test statistics available via the
–hypothesis-show-statistics option to include
separate information on each of the phases
(issue #1555 [https://github.com/HypothesisWorks/hypothesis/issues/1555]).

5.12.2 - 2020-05-12

This patch teaches the from_type() internals to
return slightly more efficient strategies for some generic sets and mappings.

5.12.1 - 2020-05-12

This patch adds a # noqa comment for flake8 [https://pypi.org/project/flake8/] 3.8.0, which
disagrees with mypy [https://pypi.org/project/mypy/] about how to write the type of

5.12.0 - 2020-05-10

This release limits the maximum duration of the shrinking phase to five minutes,
so that Hypothesis does not appear to hang when making very slow progress
shrinking a failing example (issue #2340 [https://github.com/HypothesisWorks/hypothesis/issues/2340]).

If one of your tests triggers this logic, we would really appreciate a bug
report to help us improve the shrinker for difficult but realistic workloads.

5.11.0 - 2020-05-07

This release improves the interaction between assume()
and the @example() decorator, so that the
following test no longer fails with UnsatisfiedAssumption (issue #2125 [https://github.com/HypothesisWorks/hypothesis/issues/2125]):

@given(value=floats(0, 1))
@example(value=0.56789) # used to make the test fail!
@pytest.mark.parametrize("threshold", [0.5, 1])
def test_foo(threshold, value):
 assume(value < threshold)
 ...

5.10.5 - 2020-05-04

If you have django [https://pypi.org/project/django/] installed but don’t use it, this patch will make
import hypothesis a few hundred milliseconds faster (e.g. 0.704s -> 0.271s).

Thanks to importtime-waterfall [https://pypi.org/project/importtime-waterfall/] for highlighting this problem and
Jake Vanderplas [https://twitter.com/jakevdp/status/1130983439862181888] for
the solution - it’s impossible to misuse code from a module you haven’t imported!

5.10.4 - 2020-04-24

This patch improves the internals of builds() type
inference, to handle recursive forward references in certain dataclasses.
This is useful for e.g. hypothesmith [https://pypi.org/project/hypothesmith/]’s forthcoming LibCST [https://pypi.org/project/LibCST/] mode.

5.10.3 - 2020-04-22

This release reverses the order in which some operations are tried during shrinking.
This should generally be a slight performance improvement, but most tests are unlikely to notice much difference.

5.10.2 - 2020-04-22

This patch fixes issue #2406 [https://github.com/HypothesisWorks/hypothesis/issues/2406], where use of pandas.Timestamp [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html#pandas.Timestamp]
objects as bounds for the datetimes() strategy
caused an internal error. This bug was introduced in version 5.8.1.

5.10.1 - 2020-04-19

This release is a small internal refactoring to how shrinking interacts with targeted property-based testing that should have no user user visible impact.

5.10.0 - 2020-04-18

This release improves our support for datetimes and times around DST transitions.

times() and datetimes()
are now sometimes generated with fold=1, indicating that they represent the
second occurrence of a given wall-time when clocks are set backwards.
This may be set even when there is no transition, in which case the fold
value should be ignored.

For consistency, timezones provided by the pytz [https://pypi.org/project/pytz/] package can now
generate imaginary times (such as the hour skipped over when clocks ‘spring forward’
to daylight saving time, or during some historical timezone transitions).
All other timezones have always supported generation of imaginary times.

If you prefer the previous behaviour, datetimes()
now takes an argument allow_imaginary which defaults to True but
can be set to False for any timezones strategy.

5.9.1 - 2020-04-16

This patch fixes the rendering of binary()
docstring by using the proper backticks syntax.

5.9.0 - 2020-04-15

Failing tests which use target() now report the highest
score observed for each target alongside the failing example(s), even without
explicitly showing test statistics.

This improves the debugging workflow for tests of accuracy, which assert that the
total imprecision is within some error budget - for example, abs(a - b) < 0.5.
Previously, shrinking to a minimal failing example could often make errors seem
smaller or more subtle than they really are (see the threshold problem [https://hypothesis.works/articles/threshold-problem/], and issue #2180 [https://github.com/HypothesisWorks/hypothesis/issues/2180]).

5.8.6 - 2020-04-15

This patch improves the docstring of binary(),
the repr() [https://docs.python.org/3/library/functions.html#repr] of sampled_from() on
an enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum] subclass, and a warning in our pytest plugin.
There is no change in runtime behaviour.

5.8.5 - 2020-04-15

This release (potentially very significantly) improves the performance of failing tests in some rare cases,
mostly only relevant when using targeted property-based testing,
by stopping further optimisation of unrelated test cases once a failing example is found.

5.8.4 - 2020-04-14

This release fixes issue #2395 [https://github.com/HypothesisWorks/hypothesis/issues/2395], where under some circumstances targeted property-based testing could cause Hypothesis to get caught in an infinite loop.

5.8.3 - 2020-04-12

This patch teaches builds() and
from_type() to use the __signature__
attribute of classes where it has been set, improving our support
for Pydantic [https://pypi.org/project/Pydantic/] models (in pydantic >= 1.5 [https://github.com/samuelcolvin/pydantic/pull/1034]).

5.8.2 - 2020-04-12

This release improves the performance of the part of the core engine that
deliberately generates duplicate values.

5.8.1 - 2020-04-12

This patch improves dates() shrinking, to simplify
year, month, and day like datetimes() rather than
minimizing the number of days since 2000-01-01.

5.8.0 - 2020-03-24

This release adds a .hypothesis.fuzz_one_input
attribute to @given tests, for easy integration
with external fuzzers such as python-afl [https://github.com/jwilk/python-afl]
(supporting issue #171 [https://github.com/HypothesisWorks/hypothesis/issues/171]).

5.7.2 - 2020-03-24

This patch fixes issue #2341 [https://github.com/HypothesisWorks/hypothesis/issues/2341], ensuring that the printed output from a
stateful test cannot use variable names before they are defined.

5.7.1 - 2020-03-23

This patch fixes issue #2375 [https://github.com/HypothesisWorks/hypothesis/issues/2375], preventing incorrect failure when a function
scoped fixture is overridden with a higher scoped fixture.

5.7.0 - 2020-03-19

This release allows the array_dtypes() strategy
to generate Numpy dtypes which have field titles in addition to field names [https://numpy.org/doc/stable/user/basics.rec.html#field-titles].
We expect this to expose latent bugs where code expects that
set(dtype.names) == set(dtype.fields), though the latter may include titles.

5.6.1 - 2020-03-18

This makes model a positional-only argument to
from_model(), to support models
with a field literally named “model” (issue #2369 [https://github.com/HypothesisWorks/hypothesis/issues/2369]).

5.6.0 - 2020-02-29

This release adds an explicit warning for tests that are both decorated with
@given(...) and request a
function-scoped pytest fixture [https://docs.pytest.org/en/stable/how-to/fixtures.html], because such fixtures
are only executed once for all Hypothesis test cases and that often causes
trouble (issue #377 [https://github.com/HypothesisWorks/hypothesis/issues/377]).

It’s very difficult to fix this on the pytest [https://pypi.org/project/pytest/] side, so since 2015
our advice has been “just don’t use function-scoped fixtures with Hypothesis”.
Now we detect and warn about the issue at runtime!

5.5.5 - 2020-02-29

This release cleans up the internal machinery for Stateful testing,
after we dropped the legacy APIs in Hypothesis 5.0 (issue #2218 [https://github.com/HypothesisWorks/hypothesis/issues/2218]).
There is no user-visible change.

5.5.4 - 2020-02-16

This patch fixes issue #2351 [https://github.com/HypothesisWorks/hypothesis/issues/2351], arrays() would
raise a confusing error if we inferred a strategy for datetime64 or
timedelta64 values with varying time units.

We now infer an internally-consistent strategy for such arrays, and have a more
helpful error message if an inconsistent strategy is explicitly specified.

5.5.3 - 2020-02-14

This patch improves the signature of builds() by
specifying target as a positional-only argument on Python 3.8 (see PEP 570 [https://peps.python.org/pep-0570/]).
The semantics of builds() have not changed at all -
this just clarifies the documentation.

5.5.2 - 2020-02-13

This release makes Hypothesis faster at generating test cases that contain
duplicated values in their inputs.

5.5.1 - 2020-02-07

This patch has some tiny internal code clean-ups, with no user-visible change.

5.5.0 - 2020-02-07

Our style guide [https://github.com/HypothesisWorks/hypothesis/blob/master/guides/api-style.rst] suggests that optional
parameters should usually be keyword-only arguments (see PEP 3102 [https://peps.python.org/pep-3102/]) to
prevent confusion based on positional arguments - for example,
hypothesis.strategies.floats() takes up to four boolean flags
and many of the Numpy strategies have both dims and side bounds.

This release converts most optional parameters in our API to use
keyword-only arguments - and adds a compatibility shim so you get
warnings rather than errors everywhere (issue #2130 [https://github.com/HypothesisWorks/hypothesis/issues/2130]).

5.4.2 - 2020-02-06

This patch fixes compatibility with Python 3.5.2 (issue #2334 [https://github.com/HypothesisWorks/hypothesis/issues/2334]).
Note that we only test the latest patch of each minor version,
though as in this case we usually accept pull requests for older patch versions.

5.4.1 - 2020-02-01

This patch improves the repr of from_type(),
so that in most cases it will display the strategy it resolves to rather
than from_type(...). The latter form will continue to be used where
resolution is not immediately successful, e.g. invalid arguments or
recursive type definitions involving forward references.

5.4.0 - 2020-01-30

This release removes support for Python 3.5.0 and 3.5.1, where the
typing [https://docs.python.org/3/library/typing.html#module-typing] module was quite immature (e.g. missing
overload() [https://docs.python.org/3/library/typing.html#typing.overload] and Type [https://docs.python.org/3/library/typing.html#typing.Type]).

Note that Python 3.5 will reach its end-of-life in September 2020,
and new releases of Hypothesis may drop support somewhat earlier.

Note

pip install hypothesis should continue to give you the latest compatible version.
If you have somehow ended up with an incompatible version, you need to update your
packaging stack to pip >= 9.0 and setuptools >= 24.2 - see here for details [https://packaging.python.org/guides/distributing-packages-using-setuptools/#python-requires].
Then pip uninstall hypothesis && pip install hypothesis will get you back to
a compatible version.

5.3.1 - 2020-01-26

This patch does some minor internal cleanup; there is no user-visible change.

5.3.0 - 2020-01-21

The standard library ipaddress [https://docs.python.org/3/library/ipaddress.html#module-ipaddress] module is new in Python 3, and this release
adds the new ip_addresses() strategy to generate
IPv4Address [https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv4Address]es and/or
IPv6Address [https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv6Address]es (depending on the v and network
arguments).

If you use them in type annotations, from_type() now
has strategies registered for ipaddress [https://docs.python.org/3/library/ipaddress.html#module-ipaddress] address, network, and interface types.

The provisional strategies for IP address strings are therefore deprecated.

5.2.1 - 2020-01-21

This patch reverts version 5.2, due to a
strange issue [https://github.com/numpy/numpy/issues/15363]
where indexing an array of strings can raise an error instead of
returning an item which contains certain surrogate characters.

5.2.0 - 2020-01-19

This release allows from_dtype() to generate
Unicode strings which cannot be encoded in UTF-8, but are valid in Numpy
arrays (which use UTF-32).

5.1.6 - 2020-01-19

This patch fixes issue #2320 [https://github.com/HypothesisWorks/hypothesis/issues/2320], where from_type(Set[Hashable]) could raise
an internal error because Decimal("snan") is of a hashable type, but raises
an error when hashed. We now ensure that set elements and dict keys in generic
types can actually be hashed.

5.1.5 - 2020-01-12

This patch fixes an internal error when running in an IPython [https://pypi.org/project/IPython/] repl or
Jupyter [https://pypi.org/project/Jupyter/] notebook on Windows (issue #2319 [https://github.com/HypothesisWorks/hypothesis/issues/2319]), and an internal error on
Python 3.5.1 (issue #2318 [https://github.com/HypothesisWorks/hypothesis/issues/2318]).

5.1.4 - 2020-01-11

This patch fixes a bug where errors in third-party extensions such as
hypothesis-trio [https://pypi.org/project/hypothesis-trio/] or hypothesis-jsonschema [https://pypi.org/project/hypothesis-jsonschema/] were incorrectly
considered to be Hypothesis internal errors, which could result in
confusing error messages.

Thanks to Vincent Michel for reporting and fixing the bug!

5.1.3 - 2020-01-11

This release converts the type hint comments on our public API to
PEP 484 [https://peps.python.org/pep-0484/] type annotations.

Thanks to Ivan Levkivskyi for com2ann [https://pypi.org/project/com2ann/] - with the refactoring
tools from 5.0.1 it made this process remarkably easy!

5.1.2 - 2020-01-09

This patch makes multiple() iterable, so that
output like a, b = state.some_rule() is actually executable and
can be used to reproduce failing examples.

Thanks to Vincent Michel for reporting and fixing issue #2311 [https://github.com/HypothesisWorks/hypothesis/issues/2311]!

5.1.1 - 2020-01-06

This patch contains many small refactorings to replace our Python 2
compatibility functions with their native Python 3 equivalents.
Since Hypothesis is now Python 3 only, there is no user-visible change.

5.1.0 - 2020-01-03

This release teaches from_type() how to generate
datetime.timezone [https://docs.python.org/3/library/datetime.html#datetime.timezone]. As a result, you can now generate
datetime.tzinfo [https://docs.python.org/3/library/datetime.html#datetime.tzinfo] objects without having pytz [https://pypi.org/project/pytz/] installed.

If your tests specifically require pytz [https://pypi.org/project/pytz/] timezones, you should be using
hypothesis.extra.pytz.timezones() instead of st.from_type(tzinfo).

5.0.1 - 2020-01-01

This patch contains mostly-automated refactorings to remove code
that we only needed to support Python 2. Since Hypothesis is now
Python 3 only (hurray!), there is no user-visible change.

Our sincere thanks to the authors of autoflake [https://pypi.org/project/autoflake/], black [https://pypi.org/project/black/],
isort [https://pypi.org/project/isort/], and pyupgrade [https://pypi.org/project/pyupgrade/], who have each and collectively
made this kind of update enormously easier.

5.0.0 - 2020-01-01

Welcome to the next major version of Hypothesis!

There are no new features here, as we release those in minor versions.
Instead, 5.0 is a chance for us to remove deprecated features (many already
converted into no-ops), and turn a variety of warnings into errors.

If you were running on the last version of Hypothesis 4.x without any
Hypothesis deprecation warnings, this will be a very boring upgrade.
In fact, nothing will change for you at all.

Note

This release drops support for Python 2, which has passed
its end of life date [https://devguide.python.org/#status-of-python-branches].
The Python 3 Statement [https://python3statement.org/] outlines our
reasons, and lists many other packages that have made the same decision.

pip install hypothesis should continue to give you the latest compatible version.
If you have somehow ended up with Hypothesis 5.0 on Python 2, you need to update your
packaging stack to pip >= 9.0 and setuptools >= 24.2 - see here for details [https://packaging.python.org/guides/distributing-packages-using-setuptools/#python-requires].
Then pip uninstall hypothesis && pip install hypothesis will get you back to
a compatible version.

Strategies

	integers() bounds must be equal to an integer,
though they can still be other types.

	If fractions() is passed a max_denominator,
the bounds must have at most that denominator.

	floats() bounds must be exactly representable as a
floating-point number with the given width. If not, the error message
includes the nearest such number.

	sampled_from([]) is now an error.

	The values from the elements and fill strategies for
hypothesis.extra.numpy.arrays() must be losslessly representable in an
array of the given dtype.

	The min_size and max_size arguments to all collection strategies must
be of type int [https://docs.python.org/3/library/functions.html#int] (or max_size may be None).

Miscellaneous

	The .example() method of strategies (intended for interactive
exploration) no longer takes a random argument.

	It is now an error to apply @example,
@seed, or @reproduce_failure
without also applying @given.

	You may pass either the target or targets argument to stateful rules, but not both.

	deadline must be None (to disable), a
timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or an integer or float number of milliseconds.

	Both of derandomize and
print_blob must be either True or False,
where they previously accepted other values.

	stateful_step_count must be at least one.

	max_examples must be at least one.
To disable example generation, use the phases setting.

Removals

	hypothesis.stateful.GenericStateMachine in favor of hypothesis.stateful.RuleBasedStateMachine

	hypothesis.extra.django.models.models in favor of hypothesis.extra.django.from_model()
and hypothesis.extra.django.models.add_default_field_mapping in favor of
hypothesis.extra.django.register_field_strategy()

	hypothesis.HealthCheck.hung_test, without replacement

	hypothesis.settings.buffer, without replacement

	hypothesis.PrintSettings, because hypothesis.settings.print_blob takes True or False

	hypothesis.settings.timeout, in favor of hypothesis.settings.deadline

	hypothesis.unlimited without replacement (only only useful as argument to timeout)

Hypothesis 4.x

4.57.1 - 2019-12-29

This patch improves the type hints and documentation for the
django extra. There is no runtime change.

4.57.0 - 2019-12-28

This release improves support for the SupportsOp protocols from the typing [https://docs.python.org/3/library/typing.html#module-typing]
module when using on from_type() as outlined in issue #2292 [https://github.com/HypothesisWorks/hypothesis/issues/2292].
The following types now generate much more varied strategies when called
with from_type():

	typing.SupportsAbs [https://docs.python.org/3/library/typing.html#typing.SupportsAbs]

	typing.SupportsBytes [https://docs.python.org/3/library/typing.html#typing.SupportsBytes]

	typing.SupportsComplex [https://docs.python.org/3/library/typing.html#typing.SupportsComplex]

	typing.SupportsInt [https://docs.python.org/3/library/typing.html#typing.SupportsInt]

	typing.SupportsFloat [https://docs.python.org/3/library/typing.html#typing.SupportsFloat]

	typing.SupportsRound [https://docs.python.org/3/library/typing.html#typing.SupportsRound]

Note that using from_type() with one of the above strategies will not
ensure that the the specified function will execute successfully (ie : the strategy returned for
from_type(typing.SupportsAbs) may include NaNs or things which cause the abs() [https://docs.python.org/3/library/functions.html#abs]
function to error.)

Thanks to Lea Provenzano for this patch.

4.56.3 - 2019-12-22

This release fixes a small internal bug in shrinking which could have caused it
to perform slightly more tests than were necessary. Fixing this shouldn’t have
much effect but it will make shrinking slightly faster.

4.56.2 - 2019-12-21

This release removes an internal heuristic that was no longer providing much
benefit. It is unlikely that there will be any user visible effect.

4.56.1 - 2019-12-19

This release further improves the optimisation algorithm for targeted property-based testing.

4.56.0 - 2019-12-18

This release enables deprecation warnings even when the
verbosity setting is quiet,
in preparation for Hypothesis 5.0 (issue #2218 [https://github.com/HypothesisWorks/hypothesis/issues/2218]).

Warnings can still be filtered by the standard mechanisms
provided in the standard-library warnings [https://docs.python.org/3/library/warnings.html#module-warnings] module.

4.55.4 - 2019-12-18

This release improves Hypothesis’s management of the set of test cases it
tracks between runs. It will only do anything if you have the
target phase enabled and an example database set.
In those circumstances it should result in a more thorough and faster set of examples
that are tried on each run.

4.55.3 - 2019-12-18

This release makes Hypothesis better at generating test cases where generated
values are duplicated in different parts of the test case. This will be
especially noticeable with reasonably complex values, as it was already able
to do this for simpler ones such as integers or floats.

4.55.2 - 2019-12-17

This release expands the set of test cases that Hypothesis saves in its
database for future runs to include a representative set of “structurally
different” test cases - e.g. it might try to save test cases where a given list
is empty or not.

Currently this is unlikely to have much user visible impact except to produce
slightly more consistent behaviour between consecutive runs of a test suite.
It is mostly groundwork for future improvements which will exploit this
functionality more effectively.

4.55.1 - 2019-12-16

This patch fixes issue #2257 [https://github.com/HypothesisWorks/hypothesis/issues/2257], where from_type()
could incorrectly generate bytestrings when passed a generic
typing.Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence] such as Sequence[set].

4.55.0 - 2019-12-16

This release adds database support for targeted property-based testing,
so the best examples based on the targeting will be saved and reused between runs.
This is mostly laying groundwork for future features in this area, but
will also make targeted property-based tests more useful during development,
where the same tests tend to get run over and over again.

If max_examples is large, this may increase memory
usage significantly under some circumstances, but these should be relatively
rare.

This release also adds a dependency on the sortedcontainers [https://pypi.org/project/sortedcontainers/] package.

4.54.2 - 2019-12-16

This release improves the optimisation algorithm for targeted property-based testing,
so that it will find higher quality results more reliably. Specifically, in cases where it would previously have got near a local optimum,
it will now tend to achieve the locally optimal value.

4.54.1 - 2019-12-16

This release is mostly internal changes in support of better testing of the
core engine. You are unlikely to see much effect, although some internal
heuristics have changed slightly.

4.54.0 - 2019-12-15

This release adds a dedicated phase for targeted property-based testing,
and (somewhat) improves the targeting algorithm so that it will find higher quality results more reliably.
This comes at a cost of making it more likely to get stuck in a local optimum.

4.53.3 - 2019-12-15

This patch fixes from_type() with
typing.Hashable [https://docs.python.org/3/library/typing.html#typing.Hashable] and typing.Sized [https://docs.python.org/3/library/typing.html#typing.Sized],
which previously failed with an internal error on Python 3.7 or later.

Thanks to Lea Provenzano for both reporting issue #2272 [https://github.com/HypothesisWorks/hypothesis/issues/2272]
and writing the patch!

4.53.2 - 2019-12-11

This release reorganises a number of the Hypothesis internal modules into a
package structure. If you are only depending on the public API it should have
no effect. If you are depending on the internal API (which you shouldn’t be,
and which we don’t guarantee compatibility on) you may have to rename some
imports.

4.53.1 - 2019-12-09

This release changes the size distribution of the number of steps run in
stateful testing: It will now almost always run the maximum number of steps
permitted.

4.53.0 - 2019-12-09

Test statistics now include the best score seen for each label, which can help avoid
the threshold problem [https://hypothesis.works/articles/threshold-problem/] when
the minimal example shrinks right down to the threshold of failure (issue #2180 [https://github.com/HypothesisWorks/hypothesis/issues/2180]).

4.52.0 - 2019-12-09

This release changes the stateful_step_count setting to raise an error if
set to 0. This is a backwards compatible change because a value of 0
would never have worked and attempting to run it would have resulted in an
internal assertion error.

4.51.1 - 2019-12-09

This release makes a small internal change to the distribution of test cases.
It is unlikely to have much user visible impact.

4.51.0 - 2019-12-07

This release deprecates use of @example,
@seed, or @reproduce_failure
without @given.

Thanks to Nick Anyos for the patch!

4.50.8 - 2019-12-05

This patch makes certain uses of Bundles more efficient in stateful testing (issue #2078 [https://github.com/HypothesisWorks/hypothesis/issues/2078]).

4.50.7 - 2019-12-05

This release refactors some of Hypothesis’s internal interfaces for representing
data generation. It should have no user visible effect.

4.50.6 - 2019-12-02

This patch removes some old debugging helpers in our Numpy extra which have
not been needed since issue #1963 [https://github.com/HypothesisWorks/hypothesis/issues/1963] and issue #2245 [https://github.com/HypothesisWorks/hypothesis/issues/2245].

4.50.5 - 2019-12-01

This patch fixes issue #2229 [https://github.com/HypothesisWorks/hypothesis/issues/2229], where Numpy arrays of unsized strings would
only ever have strings of size one due to an interaction between our generation
logic and Numpy’s allocation strategy.

4.50.4 - 2019-12-01

This patch fixes a rare internal error in strategies for a list of
unique items sampled from a short non-unique sequence (issue #2247 [https://github.com/HypothesisWorks/hypothesis/issues/2247]).
The bug was discovered via hypothesis-jsonschema [https://pypi.org/project/hypothesis-jsonschema/].

4.50.3 - 2019-12-01

This release improves the error message when
@settings tries to inherit settings from a
parent argument that isn’t a settings instance.

4.50.2 - 2019-11-29

This release improves Hypothesis’s “Falsifying example” output, by breaking
output across multiple lines where necessary, and by removing irrelevant
information from the stateful testing output.

4.50.1 - 2019-11-29

This patch adds flake8-comprehensions [https://pypi.org/project/flake8-comprehensions/] to our linter suite. There is no
user-visible change - expect perhaps via some strange microbenchmarks - but
certain parts of the code now have a clear and more consistent style.

4.50.0 - 2019-11-28

This release fixes some cases where we might previously have failed to run the
validation logic for some strategies. As a result tests which would previously
have been silently testing significantly less than they should may now start
to raise InvalidArgument now that these errors are caught.

4.49.0 - 2019-11-28

This release significantly improves the data distribution in rule based stateful testing,
by using a technique called Swarm Testing (Groce, Alex, et al. “Swarm testing.”
Proceedings of the 2012 International Symposium on Software Testing and Analysis. ACM, 2012.) [https://agroce.github.io/issta12.pdf]
to select which rules are run in any given test case. This should allow it to find many issues that it would previously have missed.

This change is likely to be especially beneficial for stateful tests with large numbers of rules.

4.48.1 - 2019-11-28

This release adds some heuristics to test case generation that try to ensure that test cases generated early on will be relatively small.

This fixes a bug introduced in Hypothesis 4.42.0 which would cause occasional
too_slow failures on some tests.

4.48.0 - 2019-11-28

This release revokes the deprecation of find, as we’ve now rebuilt it on top of
@given, which means it has minimal maintenance burden and we’re happy to support it.

4.47.5 - 2019-11-28

This release rebuilds find() on top of @given in order to have more code in common.
It should have minimal user visible effect.

4.47.4 - 2019-11-27

This patch removes an internal compatibility shim that we no longer need.

4.47.3 - 2019-11-26

This patch fixes several typos in our docstrings and comments,
with no change in behaviour. Thanks to Dmitry Dygalo for
identifying and fixing them!

4.47.2 - 2019-11-25

This release fixes an internal issue where Hypothesis would sometimes generate
test cases that were above its intended maximum size. This would only have
happened rarely and probably would not have caused major problems when it did.

Users of the new targeted property-based testing might
see minor impact (possibly slightly faster tests and slightly worse target scores),
but only in the unlikely event that they were hitting this problem. Other users
should not see any effect at all.

4.47.1 - 2019-11-24

This release removes some unused code from the core engine.
There is no user-visible change.

4.47.0 - 2019-11-24

This release commonizes some code between running explicit examples and normal test execution.
The main user visible impact of this is that deadlines are now enforced when running explicit examples.

4.46.1 - 2019-11-23

This patch ensures that a KeyboardInterrupt received during example generation
is not treated as a mystery test failure but instead propagates to the top
level, not recording the interrupted generation in the conjecture data tree.
Thanks to Anne Archibald for identifying and fixing the problem.

4.46.0 - 2019-11-22

This release changes the behaviour of floats()
when excluding signed zeros - floats(max_value=0.0, exclude_max=True)
can no longer generate -0.0 nor the much rarer
floats(min_value=-0.0, exclude_min=True) generate +0.0.

The correct interaction between signed zeros and exclusive endpoints was unclear;
we now enforce the invariant that floats() will
never generate a value equal to an excluded endpoint (issue #2201 [https://github.com/HypothesisWorks/hypothesis/issues/2201]).

If you prefer the old behaviour, you can pass floats(max_value=-0.0) or
floats(min_value=0.0) which is exactly equivalent and has not changed.
If you had two endpoints equal to zero, we recommend clarifying your tests by using
just() or sampled_from()
instead of floats().

4.45.1 - 2019-11-20

This patch improves the error message when invalid arguments are passed
to rule() or invariant()
(issue #2149 [https://github.com/HypothesisWorks/hypothesis/issues/2149]).

Thanks to Benjamin Palmer for this bugfix!

4.45.0 - 2019-11-20

This release supports typing.Final [https://docs.python.org/3/library/typing.html#typing.Final] and typing.TypedDict [https://docs.python.org/3/library/typing.html#typing.TypedDict]
in from_type().

4.44.5 - 2019-11-20

This patch disables our pytest [https://pypi.org/project/pytest/] plugin when running on versions
of pytest [https://pypi.org/project/pytest/] before 4.3, the oldest our plugin supports.
Note that at time of writing the Pytest developers only support 4.6 and later!

Hypothesis tests using @given() work on any
test runner, but our integrations to e.g. avoid example database collisions
when combined with @pytest.mark.parametrize eventually drop support
for obsolete versions.

4.44.4 - 2019-11-20

This patch adds some internal comments and clarifications to the Hypothesis
implementation. There is no user-visible change.

4.44.3 - 2019-11-20

This patch avoids importing test runners such as pytest [https://pypi.org/project/pytest/], unittest2 [https://pypi.org/project/unittest2/],
or nose [https://pypi.org/project/nose/] solely to access their special “skip test” exception types -
if the module is not in sys.modules [https://docs.python.org/3/library/sys.html#sys.modules], the exception can’t be raised anyway.

This fixes a problem where importing an otherwise unused module could cause
spurious errors due to import-time side effects (and possibly -Werror).

4.44.2 - 2019-11-12

This release fixes @given to only complain about
missing keyword-only arguments if the associated test function is actually
called.

This matches the behaviour of other InvalidArgument errors produced by
@given.

4.44.1 - 2019-11-11

This patch allows Hypothesis to run in environments that do not specify
a __file__, such as a zipapp [https://docs.python.org/3/library/zipapp.html#module-zipapp] (issue #2196 [https://github.com/HypothesisWorks/hypothesis/issues/2196]).

4.44.0 - 2019-11-11

This release adds a signature argument to
mutually_broadcastable_shapes() (issue #2174 [https://github.com/HypothesisWorks/hypothesis/issues/2174]),
which allows us to generate shapes which are valid for functions like
np.matmul() [https://numpy.org/doc/stable/reference/generated/numpy.matmul.html#numpy.matmul] that require shapes which are not simply broadcastable.

Thanks to everyone who has contributed to this feature over the last year,
and a particular shout-out to Zac Hatfield-Dodds and Ryan Soklaski for
mutually_broadcastable_shapes() and to
Ryan Turner for the downstream hypothesis-gufunc [https://pypi.org/project/hypothesis-gufunc/] project.

4.43.9 - 2019-11-11

This patch fixes issue #2108 [https://github.com/HypothesisWorks/hypothesis/issues/2108], where the first test using
data() to draw from characters()
or text() would be flaky due to unreliable test timings.

Time taken by lazy instantiation of strategies is now counted towards drawing from
the strategy, rather than towards the deadline for the test function.

4.43.8 - 2019-11-08

This release ensures that the strategies passed to
@given are properly validated when applied to a test
method inside a test class.

This should result in clearer error messages when some of those strategies are
invalid.

4.43.7 - 2019-11-08

This release changes how Hypothesis manages its search space in cases where it
generates redundant data. This should cause it to generate significantly fewer
duplicated examples (especially with short integer ranges), and may cause it to
produce more useful examples in some cases (especially ones where there is a
significant amount of filtering).

4.43.6 - 2019-11-07

This patch refactors width handling in floats();
you may notice small performance improvements but the main purpose is to
enable work on issue #1704 [https://github.com/HypothesisWorks/hypothesis/issues/1704] (improving shrinking of bounded floats).

4.43.5 - 2019-11-06

This patch removes an unused internal flag.
There is no user-visible change.

4.43.4 - 2019-11-05

This patch corrects the exception type and error message you get if you attempt
to use data() to draw from something which is not
a strategy. This never worked, but the error is more helpful now.

4.43.3 - 2019-11-05

We’ve adopted flake8-bugbear [https://pypi.org/project/flake8-bugbear/] to check for a few more style issues,
and this patch implements the minor internal cleanups it suggested.
There is no user-visible change.

4.43.2 - 2019-11-05

This patch fixes the formatting of some documentation,
but there is no change to any executed code.

4.43.1 - 2019-11-04

Python 3.8’s new typing.Literal [https://docs.python.org/3/library/typing.html#typing.Literal] type - see PEP 586 [https://peps.python.org/pep-0586/] for
details - is now supported in from_type().

4.43.0 - 2019-11-04

This release adds the strategy mutually_broadcastable_shapes(), which generates multiple array shapes that are mutually broadcast-compatible with an optional user-specified base-shape.

This is a generalisation of broadcastable_shapes().
It relies heavily on non-public internals for performance when generating and shrinking examples.
We intend to support generating shapes matching a ufunc signature in a future version (issue #2174 [https://github.com/HypothesisWorks/hypothesis/issues/2174]).

Thanks to Ryan Soklaski, Zac Hatfield-Dodds, and @rdturnermtl who contributed to this new feature.

4.42.10 - 2019-11-03

This release fixes from_type() when used with
bounded or constrained typing.TypeVar [https://docs.python.org/3/library/typing.html#typing.TypeVar] objects (issue #2094 [https://github.com/HypothesisWorks/hypothesis/issues/2094]).

Previously, distinct typevars with the same constraints would be treated as all
single typevar, and in cases where a typevar bound was resolved to a union of
subclasses this could result in mixed types being generated for that typevar.

4.42.9 - 2019-11-03

This patch ensures that the default value broadcastable_shapes()
chooses for max_dims is always valid (at most 32), even if you pass min_dims=32.

4.42.8 - 2019-11-02

This patch ensures that we only add profile information to the pytest header
if running either pytest or Hypothesis in verbose mode, matching the
builtin cache plugin [https://docs.pytest.org/en/latest/how-to/cache.html]
(issue #2155 [https://github.com/HypothesisWorks/hypothesis/issues/2155]).

4.42.7 - 2019-11-02

This patch makes stateful step printing expand the result of a step into
multiple variables when you return multiple() (issue #2139 [https://github.com/HypothesisWorks/hypothesis/issues/2139]).
Thanks to Joseph Weston for reporting and fixing this bug!

4.42.6 - 2019-11-02

This release fixes a bug (issue #2166 [https://github.com/HypothesisWorks/hypothesis/issues/2166]) where a Unicode character info
cache file was generated but never used on subsequent test runs, causing tests
to run more slowly than they should have.

Thanks to Robert Knight for this bugfix!

4.42.5 - 2019-11-01

This patch corrects some internal documentation. There is no user-visible change.

4.42.4 - 2019-11-01

This release fixes a bug (issue #2160 [https://github.com/HypothesisWorks/hypothesis/issues/2160]) where decorators applied after
@settings and before
@given were ignored.

Thanks to Tom Milligan for this bugfix!

4.42.3 - 2019-10-30

This release updates Hypothesis’s formatting to the new version of black [https://pypi.org/project/black/], and
has absolutely no user visible effect.

4.42.2 - 2019-10-30

This release fixes a bug in recursive() which would
have meant that in practice max_leaves was treated as if it was lower than
it actually is - specifically it would be capped at the largest power of two
smaller than it. It is now handled correctly.

4.42.1 - 2019-10-30

Python 3.8’s new typing.SupportsIndex [https://docs.python.org/3/library/typing.html#typing.SupportsIndex] type - see PEP 357 [https://peps.python.org/pep-0357/]
for details - is now supported in from_type().

Thanks to Grigorios Giannakopoulos for the patch!

4.42.0 - 2019-10-27

This release significantly simplifies Hypothesis’s internal logic for data
generation, by removing a number of heuristics of questionable or unproven
value.

The results of this change will vary significantly from test to test. Most
test suites will see significantly faster data generation and lower memory
usage. The “quality” of the generated data may go up or down depending on your
particular test suites.

If you see any significant regressions in Hypothesis’s ability to find bugs in
your code as a result of this release, please file an issue to let us know.

Users of the new targeted property-based testing
functionality are reasonably likely to see improvements in data generation,
as this release changes the search algorithm for targeted property based
testing to one that is more likely to be productive than the existing approach.

4.41.3 - 2019-10-21

This patch is to ensure that our internals remain comprehensible to
mypy [https://pypi.org/project/mypy/] 0.740 - there is no user-visible change.

4.41.2 - 2019-10-17

This patch changes some internal hashes to SHA384, to better support
users subject to FIPS-140. There is no user-visible API change.

Thanks to Paul Kehrer for this contribution!

4.41.1 - 2019-10-16

This release makes --hypothesis-show-statistics much more useful for
tests using a RuleBasedStateMachine, by
simplifying the reprs so that events are aggregated correctly.

4.41.0 - 2019-10-16

This release upgrades the fixed_dictionaries()
strategy to support optional keys (issue #1913 [https://github.com/HypothesisWorks/hypothesis/issues/1913]).

4.40.2 - 2019-10-16

This release makes some minor internal changes in support of improving the
Hypothesis test suite. It should not have any user visible impact.

4.40.1 - 2019-10-14

This release changes how Hypothesis checks if a parameter to a test function is a mock object.
It is unlikely to have any noticeable effect, but may result in a small performance improvement,
especially for test functions where a mock object is being passed as the first argument.

4.40.0 - 2019-10-09

This release fixes a bug where our example database logic did not distinguish
between failing examples based on arguments from a @pytest.mark.parametrize(...).
This could in theory cause data loss if a common failure overwrote a rare one, and
in practice caused occasional file-access collisions in highly concurrent workloads
(e.g. during a 300-way parametrize on 16 cores).

For internal reasons this also involves bumping the minimum supported version of
pytest [https://pypi.org/project/pytest/] to 4.3

Thanks to Peter C Kroon for the Hacktoberfest patch!

4.39.3 - 2019-10-09

This patch improves our type hints on the emails(),
functions(), integers(),
iterables(), and slices()
strategies, as well as the .filter() method.

There is no runtime change, but if you use mypy [https://pypi.org/project/mypy/] or a similar
type-checker on your tests the results will be a bit more precise.

4.39.2 - 2019-10-09

This patch improves the performance of unique collections such as
sets() of just()
or booleans() strategies. They were already
pretty good though, so you’re unlikely to notice much!

4.39.1 - 2019-10-09

If a value in a dict passed to fixed_dictionaries()
is not a strategy, Hypothesis now tells you which one.

4.39.0 - 2019-10-07

This release adds the basic_indices() strategy,
to generate basic indexes [https://numpy.org/doc/stable/reference/arrays.indexing.html]
for arrays of the specified shape (issue #1930 [https://github.com/HypothesisWorks/hypothesis/issues/1930]).

It generates tuples containing some mix of integers, slice [https://docs.python.org/3/library/functions.html#slice] objects,
... (Ellipsis), and numpy.newaxis [https://numpy.org/doc/stable/reference/constants.html#numpy.newaxis]; which when used to index an array
of the specified shape produce either a scalar or a shared-memory view of the array.
Note that the index tuple may be longer or shorter than the array shape, and may
produce a view with another dimensionality again!

Thanks to Lampros Mountrakis, Ryan Soklaski, and Zac Hatfield-Dodds for their
collaboration on this surprisingly subtle strategy!

4.38.3 - 2019-10-04

This patch defers creation of the .hypothesis directory until we have
something to store in it, meaning that it will appear when Hypothesis is
used rather than simply installed.

Thanks to Peter C Kroon for the Hacktoberfest patch!

4.38.2 - 2019-10-02

This patch bumps our dependency on attrs [https://pypi.org/project/attrs/] to >=19.2.0;
but there are no user-visible changes to Hypothesis.

4.38.1 - 2019-10-01

This is a comment-only patch which tells mypy [https://pypi.org/project/mypy/] 0.730 to ignore
some internal compatibility shims we use to support older Pythons.

4.38.0 - 2019-10-01

This release adds the hypothesis.target() function, which implements
targeted property-based testing
(issue #1779 [https://github.com/HypothesisWorks/hypothesis/issues/1779]).

By calling target() in your test function, Hypothesis can
do a hill-climbing search for bugs. If you can calculate a suitable metric
such as the load factor or length of a queue, this can help you find bugs with
inputs that are highly improbably from unguided generation - however good our
heuristics, example diversity, and deduplication logic might be. After all,
those features are at work in targeted PBT too!

4.37.0 - 2019-09-28

This release emits a warning if you use the .example() method of
a strategy in a non-interactive context.

given() is a much better choice for writing tests,
whether you care about performance, minimal examples, reproducing
failures, or even just the variety of inputs that will be tested!

4.36.2 - 2019-09-20

This patch disables part of the typing [https://docs.python.org/3/library/typing.html#module-typing]-based inference for the
attrs [https://pypi.org/project/attrs/] package under Python 3.5.0, which has some incompatible
internal details (issue #2095 [https://github.com/HypothesisWorks/hypothesis/issues/2095]).

4.36.1 - 2019-09-17

This patch fixes a bug in strategy inference for attrs [https://pypi.org/project/attrs/] classes where
Hypothesis would fail to infer a strategy for attributes of a generic type
such as Union[int, str] or List[bool] (issue #2091 [https://github.com/HypothesisWorks/hypothesis/issues/2091]).

Thanks to Jonathan Gayvallet for the bug report and this patch!

4.36.0 - 2019-09-09

This patch deprecates min_len or max_len of 0 in
byte_string_dtypes() and
unicode_string_dtypes().
The lower limit is now 1.

Numpy uses a length of 0 in these dtypes to indicate an undetermined size,
chosen from the data at array creation.
However, as the arrays() strategy creates arrays
before filling them, strings were truncated to 1 byte.

4.35.1 - 2019-09-09

This patch improves the messaging that comes from invalid size arguments
to collection strategies such as lists().

4.35.0 - 2019-09-04

This release improves the from_lark() strategy,
tightening argument validation and adding the explicit argument to allow use
with terminals that use @declare instead of a string or regular expression.

This feature is required to handle features such as indent and dedent tokens
in Python code, which can be generated with the hypothesmith [https://pypi.org/project/hypothesmith/] package.

4.34.0 - 2019-08-23

The from_type() strategy now knows to look up
the subclasses of abstract types, which cannot be instantiated directly.

This is very useful for hypothesmith [https://pypi.org/project/hypothesmith/] to support libCST [https://pypi.org/project/libCST/].

4.33.1 - 2019-08-21

This patch works around a crash when an incompatible version of Numpy
is installed under PyPy 5.10 (Python 2.7).

If you are still using Python 2, please upgrade to Python 3 as soon
as possible - it will be unsupported at the end of this year.

4.33.0 - 2019-08-20

This release improves the domains()
strategy, as well as the urls() and
the emails() strategies which use it.
These strategies now use the full IANA list of Top Level Domains
and are correct as per RFC 1035 [https://datatracker.ietf.org/doc/html/rfc1035.html].

Passing tests using these strategies may now fail.

Thanks to TechDragon [https://github.com/techdragon] for this improvement.

4.32.3 - 2019-08-05

This patch tidies up the repr of several settings-related objects,
at runtime and in the documentation, and deprecates the undocumented
edge case that phases=None was treated like phases=tuple(Phase).

It also fixes from_lark() with
lark 0.7.2 [https://pypi.org/project/lark-parser/] and later.

4.32.2 - 2019-07-30

This patch updates some internal comments for mypy [https://pypi.org/project/mypy/] 0.720.
There is no user-visible impact.

4.32.1 - 2019-07-29

This release changes how the shrinker represents its progress internally. For large generated test cases
this should result in significantly less memory usage and possibly faster shrinking. Small generated
test cases may be slightly slower to shrink but this shouldn’t be very noticeable.

4.32.0 - 2019-07-28

This release makes arrays() more pedantic about
elements strategies that cannot be exactly represented as array elements.

In practice, you will see new warnings if you were using a float16 or
float32 dtype without passing floats() the
width=16 or width=32 arguments respectively.

The previous behaviour could lead to silent truncation, and thus some elements
being equal to an explicitly excluded bound (issue #1899 [https://github.com/HypothesisWorks/hypothesis/issues/1899]).

4.31.1 - 2019-07-28

This patch changes an internal use of MD5 to SHA hashes, to better support
users subject to FIPS-140. There is no user-visible or API change.

Thanks to Alex Gaynor for this patch.

4.31.0 - 2019-07-24

This release simplifies the logic of the print_blob setting by removing the option to set it to PrintSettings.INFER.
As a result the print_blob setting now takes a single boolean value, and the use of PrintSettings is deprecated.

4.28.2 - 2019-07-14

This patch improves the docstrings of several Hypothesis strategies, by
clarifying markup and adding cross-references. There is no runtime change.

Thanks to Elizabeth Williams and Serah Njambi Rono for their contributions
at the SciPy 2019 sprints!

4.28.1 - 2019-07-12

This patch improves the behaviour of the text()
strategy when passed an alphabet which is not a strategy. The value is
now interpreted as include_characters to characters()
instead of a sequence for sampled_from(), which
standardises the distribution of examples and the shrinking behaviour.

You can get the previous behaviour by using
lists(sampled_from(alphabet)).map("".map) instead.

4.28.0 - 2019-07-11

This release deprecates find(). The .example() method is a better
replacement if you want an example, and for the rare occasions where you
want the minimal example you can get it from @given.

@given has steadily outstripped find() in both
features and performance over recent years, and as we do not have the resources
to maintain and test both we think it is better to focus on just one.

4.27.0 - 2019-07-08

This release refactors the implementation of the .example() method,
to more accurately represent the data which will be generated by
@given.

As a result, calling s.example() on an empty strategy s
(such as nothing()) now raises Unsatisfiable
instead of the old NoExamples exception.

4.26.4 - 2019-07-07

This patch ensures that the Pandas extra will keep working when Python 3.8
removes abstract base classes from the top-level collections [https://docs.python.org/3/library/collections.html#module-collections]
namespace. This also fixes the relevant warning in Python 3.7, but there
is no other difference in behaviour and you do not need to do anything.

4.26.3 - 2019-07-05

This release fixes issue #2027 [https://github.com/HypothesisWorks/hypothesis/issues/2027], by changing the way Hypothesis tries to generate distinct examples to be more efficient.

This may result in slightly different data distribution, and should improve generation performance in general,
but should otherwise have minimal user impact.

4.26.2 - 2019-07-04

This release fixes issue #1864 [https://github.com/HypothesisWorks/hypothesis/issues/1864], where some simple tests would perform very slowly,
because they would run many times with each subsequent run being progressively slower.
They will now stop after a more reasonable number of runs without hitting this problem.

Unless you are hitting exactly this issue, it is unlikely that this release will have any effect,
but certain classes of custom generators that are currently very slow may become a bit faster,
or start to trigger health check failures.

4.26.1 - 2019-07-04

This release adds the strategy integer_array_indices(),
which generates tuples of Numpy arrays that can be used for
advanced indexing [http://www.pythonlikeyoumeanit.com/Module3_IntroducingNumpy/AdvancedIndexing.html#Integer-Array-Indexing]
to select an array of a specified shape.

4.26.0 - 2019-07-04

This release significantly improves the performance of drawing unique collections whose
elements are drawn from sampled_from() strategies.

As a side effect, this detects an error condition that would previously have
passed silently: When the min_size argument on a collection with distinct elements
is greater than the number of elements being sampled, this will now raise an error.

4.25.1 - 2019-07-03

This release removes some defunct internal functionality that was only being used
for testing. It should have no user visible impact.

4.25.0 - 2019-07-03

This release deprecates and disables the buffer_size setting,
which should have been treated as a private implementation detail
all along. We recommend simply deleting this settings argument.

4.24.6 - 2019-06-26

This patch makes datetimes() more efficient,
as it now handles short months correctly by construction instead of filtering.

4.24.5 - 2019-06-23

This patch improves the development experience by simplifying the tracebacks
you will see when e.g. you have used the .map(...) method of a strategy
and the mapped function raises an exception.

No new exceptions can be raised, nor existing exceptions change anything but
their traceback. We’re simply using if-statements rather than exceptions for
control flow in a certain part of the internals!

4.24.4 - 2019-06-21

This patch fixes issue #2014 [https://github.com/HypothesisWorks/hypothesis/issues/2014], where our compatibility layer broke with version
3.7.4 of the typing [https://pypi.org/project/typing/] module backport on PyPI.

This issue only affects Python 2. We remind users that Hypothesis, like many other
packages, will drop Python 2 support on 2020-01-01 [https://python3statement.org]
and already has several features that are only available on Python 3.

4.24.3 - 2019-06-07

This patch improves the implementation of an internal wrapper on Python 3.8
beta1 (and will break on the alphas; but they’re not meant to be stable).
On other versions, there is no change at all.

Thanks to Daniel Hahler for the patch, and Victor Stinner for his work
on bpo-37032 [https://bugs.python.org/issue37032] that made it possible.

4.24.2 - 2019-06-06

Deprecation messages for functions in hypothesis.extra.django.models now
explicitly name the deprecated function to make it easier to track down usages.
Thanks to Kristian Glass for this contribution!

4.24.1 - 2019-06-04

This patch fixes issue #1999 [https://github.com/HypothesisWorks/hypothesis/issues/1999], a spurious bug raised when a @st.composite function was passed a keyword-only argument.

Thanks to Jim Nicholls for his fantastic bug report.

4.24.0 - 2019-05-29

This release deprecates GenericStateMachine, in favor of
RuleBasedStateMachine. Rule-based stateful
testing is significantly faster, especially during shrinking.

If your use-case truly does not fit rule-based stateful testing,
we recommend writing a custom test function which drives your specific
control-flow using data().

4.23.9 - 2019-05-28

This patch fixes a very rare example database issue with file permissions.

When running a test that uses both @given
and pytest.mark.parametrize, using pytest-xdist [https://pypi.org/project/pytest-xdist/] on Windows,
with failing examples in the database, two attempts to read a file could
overlap and we caught FileNotFound but not other OSErrors.

4.23.8 - 2019-05-26

This patch has a minor cleanup of the internal engine.
There is no user-visible impact.

4.23.7 - 2019-05-26

This patch clarifies some error messages when the test function signature
is incompatible with the arguments to @given,
especially when the @settings() decorator
is also used (issue #1978 [https://github.com/HypothesisWorks/hypothesis/issues/1978]).

4.23.6 - 2019-05-19

This release adds the pyupgrade [https://pypi.org/project/pyupgrade/] fixer to our code style,
for consistent use of dict and set literals and comprehensions.

4.23.5 - 2019-05-16

This release slightly simplifies a small part of the core engine.
There is no user-visible change.

4.23.4 - 2019-05-09

Fixes a minor formatting issue the docstring of from_type()

4.23.3 - 2019-05-09

Adds a recipe to the docstring of from_type()
that describes a means for drawing values for “everything except” a specified type.
This recipe is especially useful for writing tests that perform input-type validation.

4.23.2 - 2019-05-08

This patch uses autoflake [https://pypi.org/project/autoflake/] to remove some pointless pass statements,
which improves our workflow but has no user-visible impact.

4.23.1 - 2019-05-08

This patch fixes an OverflowError in
from_type(xrange) on Python 2.

It turns out that not only do the start and stop values have to
fit in a C long, but so does stop - start. We now handle this even
on 32bit platforms, but remind users that Python2 will not be supported
after 2019 without specific funding.

4.23.0 - 2019-05-08

This release implements the slices() strategy,
to generate slices of a length-size sequence.

Thanks to Daniel J. West for writing this patch at the PyCon 2019 sprints!

4.22.3 - 2019-05-07

This patch exposes DataObject, solely
to support more precise type hints. Objects of this type are provided
by data(), and can be used to draw examples
from strategies intermixed with your test code.

4.22.2 - 2019-05-07

This patch fixes the very rare issue #1798 [https://github.com/HypothesisWorks/hypothesis/issues/1798] in
array_dtypes(),
which caused an internal error in our tests.

4.22.1 - 2019-05-07

This patch fixes a rare bug in from_type(range).

Thanks to Zebulun Arendsee for fixing the bug at the PyCon 2019 Sprints.

4.22.0 - 2019-05-07

The unique_by argument to lists now accepts a
tuple of callables such that every element of the generated list will be unique
with respect to each callable in the tuple (issue #1916 [https://github.com/HypothesisWorks/hypothesis/issues/1916]).

Thanks to Marco Sirabella for this feature at the PyCon 2019 sprints!

4.21.1 - 2019-05-06

This patch cleans up the internals of one_of().
You may see a slight change to the distribution of examples from this strategy
but there is no change to the public API.

Thanks to Marco Sirabella for writing this patch at the PyCon 2019 sprints!

4.21.0 - 2019-05-05

The from_type() strategy now supports
slice [https://docs.python.org/3/library/functions.html#slice] objects.

Thanks to Charlie El. Awbery for writing this feature at the
PyCon 2019 Mentored Sprints [https://us.pycon.org/2019/hatchery/mentoredsprints/].

4.20.0 - 2019-05-05

This release improves the array_shapes()
strategy, to choose an appropriate default for max_side based on the
min_side, and max_dims based on the min_dims. An explicit
error is raised for dimensions greater than 32, which are not supported
by Numpy, as for other invalid combinations of arguments.

Thanks to Jenny Rouleau for writing this feature at the
PyCon 2019 Mentored Sprints [https://us.pycon.org/2019/hatchery/mentoredsprints/].

4.19.0 - 2019-05-05

The from_type() strategy now supports
range [https://docs.python.org/3/library/stdtypes.html#range] objects (or xrange on Python 2).

Thanks to Katrina Durance for writing this feature at the
PyCon 2019 Mentored Sprints [https://us.pycon.org/2019/hatchery/mentoredsprints/].

4.18.3 - 2019-04-30

This release fixes a very rare edge case in the test-case mutator,
which could cause an internal error with certain unusual tests.

4.18.2 - 2019-04-30

This patch makes Hypothesis compatible with the Python 3.8 alpha, which
changed the representation of code objects to support positional-only
arguments. Note however that Hypothesis does not (yet) support such
functions as e.g. arguments to builds()
or inputs to @given.

Thanks to Paul Ganssle for identifying and fixing this bug.

4.18.1 - 2019-04-29

This patch improves the performance of unique collections such as
sets() when the elements are drawn from a
sampled_from() strategy (issue #1115 [https://github.com/HypothesisWorks/hypothesis/issues/1115]).

4.18.0 - 2019-04-24

This release adds the functions() strategy,
which can be used to imitate your ‘real’ function for callbacks.

4.17.2 - 2019-04-19

This release refactors stateful rule selection to share the new machinery
with sampled_from() instead of using the original
independent implementation.

4.17.1 - 2019-04-16

This patch allows Hypothesis to try a few more examples after finding the
first bug, in hopes of reporting multiple distinct bugs. The heuristics
described in issue #847 [https://github.com/HypothesisWorks/hypothesis/issues/847] ensure that we avoid wasting time on fruitless
searches, while still surfacing each bug as soon as possible.

4.17.0 - 2019-04-16

This release adds the strategy broadcastable_shapes(),
which generates array shapes that are broadcast-compatible [https://www.pythonlikeyoumeanit.com/Module3_IntroducingNumpy/Broadcasting.html#Rules-of-Broadcasting]
with a provided shape.

4.16.0 - 2019-04-12

This release allows register_type_strategy() to be used
with typing.NewType [https://docs.python.org/3/library/typing.html#typing.NewType] instances. This may be useful to e.g. provide
only positive integers for from_type(UserId)
with a UserId = NewType('UserId', int) type.

Thanks to PJCampi for suggesting and writing the patch!

4.15.0 - 2019-04-09

This release supports passing a timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta] as the
deadline setting, so you no longer have to remember
that the number is in milliseconds (issue #1900 [https://github.com/HypothesisWorks/hypothesis/issues/1900]).

Thanks to Damon Francisco for this change!

4.14.7 - 2019-04-09

This patch makes the type annotations on hypothesis.extra.dateutil
compatible with mypy [https://pypi.org/project/mypy/] 0.700.

4.14.6 - 2019-04-07

This release fixes a bug introduced in Hypothesis 4.14.3
that would sometimes cause
sampled_from(...).filter(...)
to encounter an internal assertion failure when there are three or fewer
elements, and every element is rejected by the filter.

4.14.5 - 2019-04-05

This patch takes the previous efficiency improvements to
sampled_from(...).filter(...)
strategies that reject most elements, and generalises them to also apply to
sampled_from(...).filter(...).filter(...) and longer chains of filters.

4.14.4 - 2019-04-05

This release fixes a bug that prevented
random_module()
from correctly restoring the previous state of the random module.

The random state was instead being restored to a temporary deterministic
state, which accidentally caused subsequent tests to see the same random values
across multiple test runs.

4.14.3 - 2019-04-03

This patch adds an internal special case to make
sampled_from(...).filter(...)
much more efficient when the filter rejects most elements (issue #1885 [https://github.com/HypothesisWorks/hypothesis/issues/1885]).

4.14.2 - 2019-03-31

This patch improves the error message if the function f in
s.flatmap(f) does not return a strategy.

Thanks to Kai Chen for this change!

4.14.1 - 2019-03-30

This release modifies how Hypothesis selects operations to run during shrinking,
by causing it to deprioritise previously useless classes of shrink until others have reached a fixed point.

This avoids certain pathological cases where the shrinker gets very close to finishing and then takes a very long time to finish the last small changes because it tries many useless shrinks for each useful one towards the end.
It also should cause a more modest improvement (probably no more than about 30%) in shrinking performance for most tests.

4.14.0 - 2019-03-19

This release blocks installation of Hypothesis on Python 3.4, which
reached its end of life date on 2019-03-18 [https://peps.python.org/pep-0429/].

This should not be of interest to anyone but downstream maintainers -
if you are affected, migrate to a secure version of Python as soon as
possible or at least seek commercial support.

4.13.0 - 2019-03-19

This release makes it an explicit error to call
floats(min_value=inf, exclude_min=True) or
floats(max_value=-inf, exclude_max=True),
as there are no possible values that can be generated (issue #1859 [https://github.com/HypothesisWorks/hypothesis/issues/1859]).

floats(min_value=0.0, max_value=-0.0)
is now deprecated. While 0. == -0. and we could thus generate either if
comparing by value, violating the sequence ordering of floats is a special
case we don’t want or need.

4.12.1 - 2019-03-18

This release should significantly reduce the amount of memory that Hypothesis uses for representing large test cases,
by storing information in a more compact representation and only unpacking it lazily when it is first needed.

4.12.0 - 2019-03-18

This update adds the report_multiple_bugs setting,
which you can use to disable multi-bug reporting and only raise whichever bug
had the smallest minimal example. This is occasionally useful when using a
debugger or tools that annotate tracebacks via introspection.

4.11.7 - 2019-03-18

This change makes a tiny improvement to the core engine’s bookkeeping.
There is no user-visible change.

4.11.6 - 2019-03-15

This release changes some of Hypothesis’s internal shrinking behaviour in order to reduce memory usage and hopefully improve performance.

4.11.5 - 2019-03-13

This release adds a micro-optimisation to how Hypothesis handles debug reporting internally.
Hard to shrink test may see a slight performance improvement, but in most common scenarios it is unlikely to be noticeable.

4.11.4 - 2019-03-13

This release removes some redundant code that was no longer needed but was still running a significant amount of computation and allocation on the hot path.
This should result in a modest speed improvement for most tests, especially those with large test cases.

4.11.3 - 2019-03-13

This release adds a micro-optimisation to how Hypothesis caches test cases.
This will cause a small improvement in speed and memory usage for large test cases,
but in most common scenarios it is unlikely to be noticeable.

4.11.2 - 2019-03-13

This release removes some internal code that populates a field that is no longer used anywhere.
This should result in some modest performance and speed improvements and no other user visible effects.

4.11.1 - 2019-03-13

This is a formatting-only patch, enabled by a new version of isort [https://pypi.org/project/isort/].

4.11.0 - 2019-03-12

This release deprecates sampled_from() with empty
sequences. This returns nothing(), which gives a
clear error if used directly… but simply vanishes if combined with another
strategy.

Tests that silently generate less than expected are a serious problem for
anyone relying on them to find bugs, and we think reliability more important
than convenience in this case.

4.10.0 - 2019-03-11

This release improves Hypothesis’s to detect flaky tests, by noticing when the behaviour of the test changes between runs.
In particular this will notice many new cases where data generation depends on external state (e.g. external sources of randomness) and flag those as flaky sooner and more reliably.

The basis of this feature is a considerable reengineering of how Hypothesis stores its history of test cases,
so on top of this its memory usage should be considerably reduced.

4.9.0 - 2019-03-09

This release adds the strategy valid_tuple_axes(),
which generates tuples of axis-indices that can be passed to the axis argument
in NumPy’s sequential functions (e.g. numpy.sum() [https://numpy.org/doc/stable/reference/generated/numpy.sum.html#numpy.sum]).

Thanks to Ryan Soklaski for this strategy.

4.8.0 - 2019-03-06

This release significantly tightens validation in hypothesis.settings.
max_examples, buffer_size,
and stateful_step_count must be positive integers;
deadline must be a positive number or None; and
derandomize must be either True or False.

As usual, this replaces existing errors with a more helpful error and starts new
validation checks as deprecation warnings.

4.7.19 - 2019-03-04

This release makes some micro-optimisations to certain calculations performed in the shrinker.
These should particularly speed up large test cases where the shrinker makes many small changes.
It will also reduce the amount allocated, but most of this is garbage that would have been immediately thrown away,
so you probably won’t see much effect specifically from that.

4.7.18 - 2019-03-03

This patch removes some overhead from arrays()
with a constant shape and dtype. The resulting performance improvement is
modest, but worthwhile for small arrays.

4.7.17 - 2019-03-01

This release makes some micro-optimisations within Hypothesis’s internal representation of test cases.
This should cause heavily nested test cases to allocate less during generation and shrinking,
which should speed things up slightly.

4.7.16 - 2019-02-28

This changes the order in which Hypothesis runs certain operations during shrinking.
This should significantly decrease memory usage and speed up shrinking of large examples.

4.7.15 - 2019-02-28

This release allows Hypothesis to calculate a number of attributes of generated test cases lazily.
This should significantly reduce memory usage and modestly improve performance,
especially for large test cases.

4.7.14 - 2019-02-28

This release reduces the number of operations the shrinker will try when reordering parts of a test case.
This should in some circumstances significantly speed up shrinking. It may result in different final test cases,
and if so usually slightly worse ones, but it should not generally have much impact on the end result as the operations removed were typically useless.

4.7.13 - 2019-02-27

This release changes how Hypothesis reorders examples within a test case during shrinking.
This should make shrinking considerably faster.

4.7.12 - 2019-02-27

This release slightly improves the shrinker’s ability to replace parts of a test case with their minimal version,
by allowing it to do so in bulk rather than one at a time. Where this is effective, shrinker performance should be modestly improved.

4.7.11 - 2019-02-25

This release makes some micro-optimisations to common operations performed during shrinking.
Shrinking should now be slightly faster, especially for large examples with relatively fast test functions.

4.7.10 - 2019-02-25

This release is a purely internal refactoring of Hypothesis’s API for representing test cases.
There should be no user visible effect.

4.7.9 - 2019-02-24

This release changes certain shrink passes to make them more efficient when
they aren’t making progress.

4.7.8 - 2019-02-23

This patch removes some unused code, which makes the internals
a bit easier to understand. There is no user-visible impact.

4.7.7 - 2019-02-23

This release reduces the number of operations the shrinker will try when reordering parts of a test case.
This should in some circumstances significantly speed up shrinking. It may result in different final test cases,
and if so usually slightly worse ones, but it should not generally have much impact on the end result as the operations removed were typically useless.

4.7.6 - 2019-02-23

This patch removes some unused code from the shrinker.
There is no user-visible change.

4.7.5 - 2019-02-23

This release changes certain shrink passes to make them adaptive - that is,
in cases where they are successfully making progress they may now do so significantly
faster.

4.7.4 - 2019-02-22

This is a docs-only patch, noting that because the lark-parser [https://pypi.org/project/lark-parser/] is under active
development at version 0.x, hypothesis[lark] APIs may break in minor
releases if necessary to keep up with the upstream package.

4.7.3 - 2019-02-22

This changes Hypothesis to no longer import various test frameworks by default (if they are installed).
which will speed up the initial import hypothesis call.

4.7.2 - 2019-02-22

This release changes Hypothesis’s internal representation of a test case to calculate some expensive structural information on demand rather than eagerly.
This should reduce memory usage a fair bit, and may make generation somewhat faster.

4.7.1 - 2019-02-21

This release refactors the internal representation of previously run test cases.
The main thing you should see as a result is that Hypothesis becomes somewhat less memory hungry.

4.7.0 - 2019-02-21

This patch allows array_shapes() to generate shapes
with side-length or even dimension zero, though the minimum still defaults to
one. These shapes are rare and have some odd behavior, but are particularly
important to test for just that reason!

In a related bigfix, arrays() now supports generating
zero-dimensional arrays with dtype=object and a strategy for iterable elements.
Previously, the array element would incorrectly be set to the first item in the
generated iterable.

Thanks to Ryan Turner for continuing to improve our Numpy support.

4.6.1 - 2019-02-19

This release is a trivial micro-optimisation inside Hypothesis which should result in it using significantly less memory.

4.6.0 - 2019-02-18

This release changes some inconsistent behavior of arrays()
from the Numpy extra when asked for an array of shape=().
arrays() will now always return a Numpy
ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], and the array will always be of the requested dtype.

Thanks to Ryan Turner for this change.

4.5.12 - 2019-02-18

This release fixes a minor typo in an internal comment. There is no user-visible change.

4.5.11 - 2019-02-15

This release fixes issue #1813 [https://github.com/HypothesisWorks/hypothesis/issues/1813], a bug introduced in 3.59.1,
which caused random_module() to no longer affect the body of the test:
Although Hypothesis would claim to be seeding the random module in fact tests would always run with a seed of zero.

4.5.10 - 2019-02-14

This patch fixes an off-by-one error in the maximum length of emails().
Thanks to Krzysztof Jurewicz for pull request #1812 [https://github.com/HypothesisWorks/hypothesis/pull/1812].

4.5.9 - 2019-02-14

This patch removes some unused code from the shrinker.
There is no user-visible change.

4.5.8 - 2019-02-12

This release fixes an internal IndexError in Hypothesis that could sometimes be triggered during shrinking.

4.5.7 - 2019-02-11

This release modifies the shrinker to interleave different types of reduction operations,
e.g. switching between deleting data and lowering scalar values rather than trying entirely deletions then entirely lowering.

This may slow things down somewhat in the typical case, but has the major advantage that many previously difficult to shrink examples should become much faster,
because the shrinker will no longer tend to stall when trying some ineffective changes to the shrink target but will instead interleave it with other more effective operations.

4.5.6 - 2019-02-11

This release makes a number of internal changes to the implementation of hypothesis.extra.lark.from_lark().
These are primarily intended as a refactoring, but you may see some minor improvements to performance when generating large strings,
and possibly to shrink quality.

4.5.5 - 2019-02-10

This patch prints an explanatory note when issue #1798 [https://github.com/HypothesisWorks/hypothesis/issues/1798] is triggered,
because the error message from Numpy is too terse to locate the problem.

4.5.4 - 2019-02-08

In Python 2, long integers are not allowed in the shape argument to
arrays(). Thanks to Ryan Turner for fixing this.

4.5.3 - 2019-02-08

This release makes a small internal refactoring to clarify how Hypothesis
instructs tests to stop running when appropriate. There is no user-visible
change.

4.5.2 - 2019-02-06

This release standardises all of the shrinker’s internal operations on running in a random order.

The main effect you will see from this that it should now be much less common for the shrinker to stall for a long time before making further progress.
In some cases this will correspond to shrinking more slowly, but on average it should result in faster shrinking.

4.5.1 - 2019-02-05

This patch updates some docstrings, but has no runtime changes.

4.5.0 - 2019-02-03

This release adds exclude_min and exclude_max arguments to
floats(), so that you can easily generate values from
open or half-open intervals [https://en.wikipedia.org/wiki/Interval_(mathematics)]
(issue #1622 [https://github.com/HypothesisWorks/hypothesis/issues/1622]).

4.4.6 - 2019-02-03

This patch fixes a bug where from_regex()
could throw an internal error if the re.IGNORECASE [https://docs.python.org/3/library/re.html#re.IGNORECASE] flag
was used (issue #1786 [https://github.com/HypothesisWorks/hypothesis/issues/1786]).

4.4.5 - 2019-02-02

This release removes two shrink passes that Hypothesis runs late in the process.
These were very expensive when the test function was slow and often didn’t do anything useful.

Shrinking should get faster for most failing tests.
If you see any regression in example quality as a result of this release, please let us know.

4.4.4 - 2019-02-02

This release modifies the way that Hypothesis deletes data during shrinking.
It will primarily be noticeable for very large examples, which should now shrink faster.

The shrinker is now also able to perform some deletions that it could not previously,
but this is unlikely to be very noticeable.

4.4.3 - 2019-01-25

This release fixes an open file leak that used to cause ResourceWarnings.

4.4.2 - 2019-01-24

This release changes Hypothesis’s internal approach to caching the results of executing test cases.
The result should be that it is now significantly less memory hungry, especially when shrinking large test cases.

Some tests may get slower or faster depending on whether the new or old caching strategy was well suited to them,
but any change in speed in either direction should be minor.

4.4.1 - 2019-01-24

This patch tightens up some of our internal heuristics to deal with shrinking floating point numbers,
which will now run in fewer circumstances.

You are fairly unlikely to see much difference from this, but if you do you are likely to see shrinking become slightly faster and/or producing slightly worse results.

4.4.0 - 2019-01-24

This release adds the from_form() function, which allows automatic testing against Django forms. (issue #35 [https://github.com/HypothesisWorks/hypothesis/issues/35])

Thanks to Paul Stiverson for this feature, which resolves our oldest open issue!

4.3.0 - 2019-01-24

This release deprecates HealthCheck.hung_test and disables the
associated runtime check for tests that ran for more than five minutes.
Such a check is redundant now that we enforce the deadline and
max_examples setting, which can be adjusted independently.

4.2.0 - 2019-01-23

This release adds a new module, hypothesis.extra.lark, which you
can use to generate strings matching a context-free grammar.

In this initial version, only lark-parser [https://pypi.org/project/lark-parser/] EBNF grammars are supported,
by the new hypothesis.extra.lark.from_lark() function.

4.1.2 - 2019-01-23

This patch fixes a very rare overflow bug (issue #1748 [https://github.com/HypothesisWorks/hypothesis/issues/1748]) which could raise an
InvalidArgument error in complex_numbers()
even though the arguments were valid.

4.1.1 - 2019-01-23

This release makes some improvements to internal code organisation and documentation and has no impact on behaviour.

4.1.0 - 2019-01-22

This release adds register_random(), which registers
random.Random instances or compatible objects to be seeded and reset
by Hypothesis to ensure that test cases are deterministic.

We still recommend explicitly passing a random.Random instance from
randoms() if possible, but registering a
framework-global state for Hypothesis to manage is better than flaky tests!

4.0.2 - 2019-01-22

This patch fixes issue #1387 [https://github.com/HypothesisWorks/hypothesis/issues/1387], where bounded integers()
with a very large range would almost always generate very large numbers.
Now, we usually use the same tuned distribution as unbounded
integers().

4.0.1 - 2019-01-16

This release randomizes the order in which the shrinker tries some of its initial normalization operations.
You are unlikely to see much difference as a result unless your generated examples are very large.
In this case you may see some performance improvements in shrinking.

4.0.0 - 2019-01-14

Welcome to the next major version of Hypothesis!

There are no new features here, as we release those in minor versions.
Instead, 4.0 is a chance for us to remove deprecated features (many already
converted into no-ops), and turn a variety of warnings into errors.

If you were running on the last version of Hypothesis 3.x without any
Hypothesis deprecation warnings (or using private APIs), this will be
a very boring upgrade. In fact, nothing will change for you at all.
Per our deprecation policy, warnings added in
the last six months (after 2018-07-05) have not been converted to errors.

Removals

	hypothesis.extra.datetime has been removed, replaced by the core
date and time strategies.

	hypothesis.extra.fakefactory has been removed, replaced by general
expansion of Hypothesis’ strategies and the third-party ecosystem.

	The SQLite example database backend has been removed.

Settings

	The deadline is now enforced by default, rather than just
emitting a warning when the default (200 milliseconds per test case) deadline is exceeded.

	The database_file setting has been removed; use database.

	The perform_health_check setting has been removed; use
suppress_health_check.

	The max_shrinks setting has been removed; use phases
to disable shrinking.

	The min_satisfying_examples, max_iterations, strict, timeout, and
use_coverage settings have been removed without user-configurable replacements.

Strategies

	The elements argument is now required for collection strategies.

	The average_size argument was a no-op and has been removed.

	Date and time strategies now only accept min_value and max_value for bounds.

	builds() now requires that the thing to build is
passed as the first positional argument.

	Alphabet validation for text() raises errors, not warnings,
as does category validation for characters().

	The choices() strategy has been removed. Instead, you can use
data() with sampled_from(),
so choice(elements) becomes data.draw(sampled_from(elements)).

	The streaming() strategy has been removed. Instead, you can use
data() and replace iterating over the stream with
data.draw() calls.

	sampled_from() and permutations()
raise errors instead of warnings if passed a collection that is not a sequence.

Miscellaneous

	Applying @given to a test function multiple times
was really inefficient, and now it’s also an error.

	Using the .example() method of a strategy (intended for interactive
exploration) within another strategy or a test function always weakened
data generation and broke shrinking, and now it’s an error too.

	The HYPOTHESIS_DATABASE_FILE environment variable is no longer
supported, as the database_file setting has been removed.

	The HYPOTHESIS_VERBOSITY_LEVEL environment variable is no longer
supported. You can use the --hypothesis-verbosity pytest argument instead,
or write your own setup code using the settings profile system to replace it.

	Using @seed or
derandomize=True now forces
database=None to ensure results
are in fact reproducible. If database is
not None, doing so also emits a HypothesisWarning.

	Unused exception types have been removed from hypothesis.errors;
namely AbnormalExit, BadData, BadTemplateDraw,
DefinitelyNoSuchExample, Timeout, and WrongFormat.

Hypothesis 3.x

3.88.3 - 2019-01-11

This changes the order that the shrinker tries certain operations in its “emergency” phase which runs late in the process.
The new order should be better at avoiding long stalls where the shrinker is failing to make progress,
which may be helpful if you have difficult to shrink test cases.
However this will not be noticeable in the vast majority of use cases.

3.88.2 - 2019-01-11

This is a pure refactoring release that extracts some logic from the core Hypothesis engine
into its own class and file. It should have no user visible impact.

3.88.1 - 2019-01-11

This patch fixes some markup in our documentation.

3.88.0 - 2019-01-10

Introduces hypothesis.stateful.multiple(), which allows rules in rule
based state machines to send multiple results at once to their target Bundle,
or none at all.

3.87.0 - 2019-01-10

This release contains a massive cleanup of the Hypothesis for Django extra:

	hypothesis.extra.django.models.models() is deprecated in favor of
hypothesis.extra.django.from_model().

	hypothesis.extra.django.models.add_default_field_mapping() is deprecated
in favor of hypothesis.extra.django.register_field_strategy().

	from_model() does not infer a strategy for
nullable fields or fields with a default unless passed infer, like
builds().
models.models() would usually but not always infer, and a special
default_value marker object was required to disable inference.

3.86.9 - 2019-01-09

This release improves some internal logic about when a test case in Hypothesis’s internal representation could lead to a valid test case.
In some circumstances this can lead to a significant speed up during shrinking.
It may have some minor negative impact on the quality of the final result due to certain shrink passes now having access to less information about test cases in some circumstances, but this should rarely matter.

3.86.8 - 2019-01-09

This release has no user visible changes but updates our URLs to use HTTPS.

3.86.7 - 2019-01-08

Hypothesis can now automatically generate values for Django models with a
URLField [https://django.readthedocs.io/en/stable/ref/models/fields.html#django.db.models.URLField], thanks to a new provisional strategy for URLs (issue #1388 [https://github.com/HypothesisWorks/hypothesis/issues/1388]).

3.86.6 - 2019-01-07

This release is a pure refactoring that extracts some internal code into its own file.
It should have no user visible effect.

3.86.5 - 2019-01-06

This is a docs-only patch, which fixes some typos and removes a few hyperlinks
for deprecated features.

3.86.4 - 2019-01-04

This release changes the order in which the shrinker tries to delete data.
For large and slow tests this may significantly improve the performance of shrinking.

3.86.3 - 2019-01-04

This release fixes a bug where certain places Hypothesis internal errors could be
raised during shrinking when a user exception occurred that suppressed an exception
Hypothesis uses internally in its generation.

The two known ways to trigger this problem were:

	Errors raised in stateful tests’ teardown function.

	Errors raised in finally blocks that wrapped a call to data.draw.

These cases will now be handled correctly.

3.86.2 - 2019-01-04

This patch is a docs-only change to fix a broken hyperlink.

3.86.1 - 2019-01-04

This patch fixes issue #1732 [https://github.com/HypothesisWorks/hypothesis/issues/1732], where integers()
would always return long values on Python 2.

3.86.0 - 2019-01-03

This release ensures that infinite numbers are never generated by
floats() with allow_infinity=False,
which could previously happen in some cases where one bound was also
provided.

The trivially inconsistent min_value=inf, allow_infinity=False now
raises an InvalidArgumentError, as does the inverse with max_value.
You can still use just(inf) to
generate inf without violating other constraints.

3.85.3 - 2019-01-02

Happy new year everyone!
This release has no user visible changes but updates our copyright headers to include 2019.

3.85.2 - 2018-12-31

This release makes a small change to the way the shrinker works.
You may see some improvements to speed of shrinking on especially large and hard to shrink examples,
but most users are unlikely to see much difference.

3.85.1 - 2018-12-30

This patch fixes issue #1700 [https://github.com/HypothesisWorks/hypothesis/issues/1700], where a line that contained a Unicode character
before a lambda definition would cause an internal exception.

3.85.0 - 2018-12-29

Introduces the hypothesis.stateful.consumes() function. When defining
a rule in stateful testing, it can be used to mark bundles from which values
should be consumed, i. e. removed after use in the rule. This has been
proposed in issue #136 [https://github.com/HypothesisWorks/hypothesis/issues/136].

Thanks to Jochen Müller for this long-awaited feature.

3.84.6 - 2018-12-28

This patch makes a small internal change to fix an issue in Hypothesis’s
own coverage tests (issue #1718 [https://github.com/HypothesisWorks/hypothesis/issues/1718]).

There is no user-visible change.

3.84.5 - 2018-12-21

This patch refactors the hypothesis.strategies module, so that private
names should no longer appear in tab-completion lists. We previously relied
on __all__ for this, but not all editors respect it.

3.84.4 - 2018-12-21

This is a follow-up patch to ensure that the deprecation date is automatically
recorded for any new deprecations. There is no user-visible effect.

3.84.3 - 2018-12-20

This patch updates the Hypothesis pytest plugin to avoid a recently
deprecated hook interface. There is no user-visible change.

3.84.2 - 2018-12-19

This patch fixes the internals for integers()
with one bound. Values from this strategy now always shrink towards zero
instead of towards the bound, and should shrink much more efficiently too.
On Python 2, providing a bound incorrectly excluded long integers,
which can now be generated.

3.84.1 - 2018-12-18

This patch adds information about when features were deprecated, but this
is only recorded internally and has no user-visible effect.

3.84.0 - 2018-12-18

This release changes the stateful testing backend from
find() to use @given
(issue #1300 [https://github.com/HypothesisWorks/hypothesis/issues/1300]). This doesn’t change how you create stateful tests,
but does make them run more like other Hypothesis tests.

@reproduce_failure and
@seed now work for stateful tests.

Stateful tests now respect the deadline
and suppress_health_check settings,
though they are disabled by default. You can enable them by using
@settings(...) as a class decorator
with whatever arguments you prefer.

3.83.2 - 2018-12-17

Hypothesis has adopted Black [https://pypi.org/project/Black/] as our code formatter (issue #1686 [https://github.com/HypothesisWorks/hypothesis/issues/1686]).
There are no functional changes to the source, but it’s prettier!

3.83.1 - 2018-12-13

This patch increases the variety of examples generated by
from_type().

3.83.0 - 2018-12-12

Our pytest plugin now warns you when strategy functions have been collected
as tests, which may happen when e.g. using the
@composite decorator when you
should be using @given(st.data()) for inline draws.
Such functions always pass when treated as tests, because the lazy creation
of strategies mean that the function body is never actually executed!

3.82.6 - 2018-12-11

Hypothesis can now show statistics when running
under pytest-xdist [https://pypi.org/project/pytest-xdist/]. Previously, statistics were only reported
when all tests were run in a single process (issue #700 [https://github.com/HypothesisWorks/hypothesis/issues/700]).

3.82.5 - 2018-12-08

This patch fixes issue #1667 [https://github.com/HypothesisWorks/hypothesis/issues/1667], where passing bounds of Numpy
dtype int64 to integers() could
cause errors on Python 3 due to internal rounding.

3.82.4 - 2018-12-08

Hypothesis now seeds and resets the global state of
np.random [https://numpy.org/doc/stable/reference/random/index.html#module-numpy.random] for each
test case, to ensure that tests are reproducible.

This matches and complements the existing handling of the
random [https://docs.python.org/3/library/random.html#module-random] module - Numpy simply maintains an
independent PRNG for performance reasons.

3.82.3 - 2018-12-08

This is a no-op release to add the new Framework :: Hypothesis
trove classifier [https://pypi.org/classifiers/] to
hypothesis [https://pypi.org/project/hypothesis/] on PyPI.

You can use it as a filter [https://pypi.org/search/?c=Framework+%3A%3A+Hypothesis]
to find Hypothesis-related packages such as extensions as they add the tag
over the coming weeks, or simply visit our curated list.

3.82.2 - 2018-12-08

The Hypothesis for Pandas extension is now
listed in setup.py, so you can pip install hypothesis[pandas].
Thanks to jmshi for this contribution.

3.82.1 - 2018-10-29

This patch fixes from_type() on Python 2
for classes where cls.__init__ is object.__init__.
Thanks to ccxcz for reporting issue #1656 [https://github.com/HypothesisWorks/hypothesis/issues/1656].

3.82.0 - 2018-10-29

The alphabet argument for text() now
uses its default value of characters(exclude_categories=('Cs',))
directly, instead of hiding that behind alphabet=None and replacing
it within the function. Passing None is therefore deprecated.

3.81.0 - 2018-10-27

GenericStateMachine and
RuleBasedStateMachine now raise an explicit error
when instances of settings are assigned to the classes’
settings attribute, which is a no-op (issue #1643 [https://github.com/HypothesisWorks/hypothesis/issues/1643]). Instead assign to
SomeStateMachine.TestCase.settings, or use @settings(...) as a class
decorator to handle this automatically.

3.80.0 - 2018-10-25

Since version 3.68.0, arrays()
checks that values drawn from the elements and fill strategies can be
safely cast to the dtype of the array, and emits a warning otherwise.

This release expands the checks to cover overflow for finite complex64
elements and string truncation caused by too-long elements or trailing null
characters (issue #1591 [https://github.com/HypothesisWorks/hypothesis/issues/1591]).

3.79.4 - 2018-10-25

Tests using @given now shrink errors raised from
pytest [https://pypi.org/project/pytest/] helper functions, instead of reporting the first example found.

This was previously fixed in version 3.56.0, but only for
stateful testing.

3.79.3 - 2018-10-23

Traceback elision is now disabled on Python 2, to avoid an import-time
SyntaxError [https://docs.python.org/3/library/exceptions.html#SyntaxError] under Python < 2.7.9 (Python: bpo-21591 [https://bugs.python.org/issue21591],
Hypothesis 3.79.2: issue #1648 [https://github.com/HypothesisWorks/hypothesis/issues/1648]).

We encourage all users to upgrade to Python 3 before the end of 2019 [https://pythonclock.org/].

3.79.2 - 2018-10-23

This patch shortens tracebacks from Hypothesis, so you can see exactly
happened in your code without having to skip over irrelevant details
about our internals (issue #848 [https://github.com/HypothesisWorks/hypothesis/issues/848]).

In the example test (see pull request #1582 [https://github.com/HypothesisWorks/hypothesis/pull/1582]), this reduces tracebacks from
nine frames to just three - and for a test with multiple errors, from
seven frames per error to just one!

If you do want to see the internal details, you can disable frame
elision by setting verbosity to debug.

3.79.1 - 2018-10-22

The abstract number classes Number [https://docs.python.org/3/library/numbers.html#numbers.Number],
Complex [https://docs.python.org/3/library/numbers.html#numbers.Complex], Real [https://docs.python.org/3/library/numbers.html#numbers.Real],
Rational [https://docs.python.org/3/library/numbers.html#numbers.Rational], and Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]
are now supported by the from_type()
strategy. Previously, you would have to use
register_type_strategy() before they
could be resolved (issue #1636 [https://github.com/HypothesisWorks/hypothesis/issues/1636])

3.79.0 - 2018-10-18

This release adds a CLI flag for verbosity --hypothesis-verbosity to
the Hypothesis pytest plugin, applied after loading the profile specified by
--hypothesis-profile. Valid options are the names of verbosity settings,
quiet, normal, verbose or debug.

Thanks to Bex Dunn for writing this patch at the PyCon Australia
sprints!

The pytest header now correctly reports the current profile if
--hypothesis-profile has been used.

Thanks to Mathieu Paturel for the contribution at the Canberra Python
Hacktoberfest.

3.78.0 - 2018-10-16

This release has deprecated the generation of integers, floats and fractions
when the conversion of the upper and/ or lower bound is not 100% exact, e.g.
when an integer gets passed a bound that is not a whole number. (issue #1625 [https://github.com/HypothesisWorks/hypothesis/issues/1625])

Thanks to Felix Grünewald for this patch during Hacktoberfest 2018.

3.77.0 - 2018-10-16

This minor release adds functionality to settings allowing
it to be used as a decorator on RuleBasedStateMachine
and GenericStateMachine.

Thanks to Tyler Nickerson for this feature in #hacktoberfest!

3.76.1 - 2018-10-16

This patch fixes some warnings added by recent releases of
pydocstyle [https://pypi.org/project/pydocstyle/] and mypy [https://pypi.org/project/mypy/].

3.76.0 - 2018-10-11

This release deprecates using floats for min_size and max_size.

The type hint for average_size arguments has been changed from
Optional[int] to None, because non-None values are always ignored and
deprecated.

3.75.4 - 2018-10-10

This patch adds more internal comments to the core engine’s sequence-length
shrinker. There should be no user-visible change.

3.75.3 - 2018-10-09

This patch adds additional comments to some of the core engine’s internal
data structures. There is no user-visible change.

3.75.2 - 2018-10-09

This patch avoids caching a trivial case, fixing issue #493 [https://github.com/HypothesisWorks/hypothesis/issues/493].

3.75.1 - 2018-10-09

This patch fixes a broken link in a docstring.
Thanks to Benjamin Lee for this contribution!

3.75.0 - 2018-10-08

This release deprecates the use of min_size=None, setting the default
min_size to 0 (issue #1618 [https://github.com/HypothesisWorks/hypothesis/issues/1618]).

3.74.3 - 2018-10-08

This patch makes some small internal changes to comply with a new lint setting
in the build. There should be no user-visible change.

3.74.2 - 2018-10-03

This patch fixes issue #1153 [https://github.com/HypothesisWorks/hypothesis/issues/1153], where time spent reifying a strategy was
also counted in the time spent generating the first example. Strategies
are now fully constructed and validated before the timer is started.

3.74.1 - 2018-10-03

This patch fixes some broken formatting and links in the documentation.

3.74.0 - 2018-10-01

This release checks that the value of the
print_blob setting is a
PrintSettings instance.

Being able to specify a boolean value was not intended, and is now deprecated.
In addition, specifying True will now cause the blob to always be printed,
instead of causing it to be suppressed.

Specifying any value that is not a PrintSettings
or a boolean is now an error.

3.73.5 - 2018-10-01

Changes the documentation for hypothesis.strategies.datetimes, hypothesis.strategies.dates, hypothesis.strategies.times to use the new parameter names min_value and max_value instead of the deprecated names

3.73.4 - 2018-09-30

This patch ensures that Hypothesis deprecation warnings display the code
that emitted them when you’re not running in -Werror mode (issue #652 [https://github.com/HypothesisWorks/hypothesis/issues/652]).

3.73.3 - 2018-09-27

Tracebacks involving @composite
are now slightly shorter due to some internal refactoring.

3.73.2 - 2018-09-26

This patch fixes errors in the internal comments for one of the shrinker
passes. There is no user-visible change.

3.73.1 - 2018-09-25

This patch substantially improves the distribution of data generated
with recursive(), and fixes a rare internal
error (issue #1502 [https://github.com/HypothesisWorks/hypothesis/issues/1502]).

3.73.0 - 2018-09-24

This release adds the fulfill() function,
which is designed for testing code that uses dpcontracts [https://pypi.org/project/dpcontracts/] 0.4 or later
for input validation. This provides some syntactic sugar around use of
assume(), to automatically filter out and retry calls that
cause a precondition check to fail (issue #1474 [https://github.com/HypothesisWorks/hypothesis/issues/1474]).

3.72.0 - 2018-09-24

This release makes setting attributes of the hypothesis.settings
class an explicit error. This has never had any effect, but could mislead
users who confused it with the current settings instance
hypothesis.settings.default (which is also immutable). You can change
the global settings with settings profiles.

3.71.11 - 2018-09-24

This patch factors out some common code in the shrinker for iterating
over pairs of data blocks. There should be no user-visible change.

3.71.10 - 2018-09-18

This patch allows from_type() to handle the
empty tuple type, typing.Tuple[()] [https://docs.python.org/3/library/typing.html#typing.Tuple].

3.71.9 - 2018-09-17

This patch updates some internal comments for mypy [https://pypi.org/project/mypy/].
There is no user-visible effect, even for Mypy users.

3.71.8 - 2018-09-17

This patch fixes a rare bug that would cause a particular shrinker pass to
raise an IndexError, if a shrink improvement changed the underlying data
in an unexpected way.

3.71.7 - 2018-09-17

This release fixes the broken cross-references in our docs,
and adds a CI check so we don’t add new ones.

3.71.6 - 2018-09-16

This patch fixes two bugs (issue #944 [https://github.com/HypothesisWorks/hypothesis/issues/944] and issue #1521 [https://github.com/HypothesisWorks/hypothesis/issues/1521]), where messages
about @seed did not check the current verbosity
setting, and the wrong settings were active while executing
explicit examples.

3.71.5 - 2018-09-15

This patch fixes a DeprecationWarning added in Python 3.8 (issue #1576 [https://github.com/HypothesisWorks/hypothesis/issues/1576]).

Thanks to tirkarthi for this contribution!

3.71.4 - 2018-09-14

This is a no-op release, which implements automatic DOI minting and code
archival of Hypothesis via Zenodo [https://zenodo.org/]. Thanks to
CERN and the EU Horizon 2020 programme for providing this service!

Check our CITATION.cff [https://github.com/HypothesisWorks/hypothesis/blob/master/CITATION.cff] file for details, or head right on over to
doi.org/10.5281/zenodo.1412597 [https://doi.org/10.5281/zenodo.1412597]

3.71.3 - 2018-09-10

This release adds the test name to some deprecation warnings,
for easier debugging.

Thanks to Sanyam Khurana for the patch!

3.71.2 - 2018-09-10

This release makes Hypothesis’s memory usage substantially smaller for tests with many
examples, by bounding the number of past examples it keeps around.

You will not see much difference unless you are running tests with max_examples
set to well over 1000, but if you do have such tests then you should see memory usage mostly plateau
where previously it would have grown linearly with time.

3.71.1 - 2018-09-09

This patch adds internal comments to some tree traversals in the core engine.
There is no user-visible change.

3.71.0 - 2018-09-08

This release deprecates the coverage-guided testing functionality,
as it has proven brittle and does not really pull its weight.

We intend to replace it with something more useful in the future,
but the feature in its current form does not seem to be worth the cost of using,
and whatever replaces it will likely look very different.

3.70.4 - 2018-09-08

This patch changes the behaviour of reproduce_failure()
so that blobs are only printed in quiet mode when the
print_blob setting is set to ALWAYS.

Thanks to Cameron McGill for writing this patch at the PyCon Australia sprints!

3.70.3 - 2018-09-03

This patch removes some unnecessary code from the internals.
There is no user-visible change.

3.70.2 - 2018-09-03

This patch fixes an internal bug where a corrupted argument to
@reproduce_failure could raise
the wrong type of error. Thanks again to Paweł T. Jochym, who maintains
Hypothesis on conda-forge [https://conda-forge.org/] and consistently
provides excellent bug reports including issue #1558 [https://github.com/HypothesisWorks/hypothesis/issues/1558].

3.70.1 - 2018-09-03

This patch updates hypothesis to report its version and settings when run with
pytest. (issue #1223 [https://github.com/HypothesisWorks/hypothesis/issues/1223]).

Thanks to Jack Massey for this feature.

3.70.0 - 2018-09-01

This release adds a fullmatch argument to
from_regex(). When fullmatch=True, the
whole example will match the regex pattern as for re.fullmatch() [https://docs.python.org/3/library/re.html#re.fullmatch].

Thanks to Jakub Nabaglo for writing this patch at the PyCon Australia sprints!

3.69.12 - 2018-08-30

This release reverts the changes to logging handling in 3.69.11,
which broke test that use the pytest [https://pypi.org/project/pytest/] caplog fixture
internally because all logging was disabled (issue #1546 [https://github.com/HypothesisWorks/hypothesis/issues/1546]).

3.69.11 - 2018-08-29

This patch will hide all logging messages produced by test cases before the
final, minimal, failing test case (issue #356 [https://github.com/HypothesisWorks/hypothesis/issues/356]).

Thanks to Gary Donovan for writing this patch at the PyCon Australia sprints!

3.69.10 - 2018-08-29

This patch fixes a bug that prevents coverage from reporting unexecuted
Python files (issue #1085 [https://github.com/HypothesisWorks/hypothesis/issues/1085]).

Thanks to Gary Donovan for writing this patch at the PyCon Australia sprints!

3.69.9 - 2018-08-28

This patch improves the packaging of the Python package by adding
LICENSE.txt to the sdist (issue #1311 [https://github.com/HypothesisWorks/hypothesis/issues/1311]), clarifying the minimum
supported versions of pytz [https://pypi.org/project/pytz/] and dateutil [https://pypi.org/project/python-dateutil/]
(issue #1383 [https://github.com/HypothesisWorks/hypothesis/issues/1383]), and adds keywords to the metadata (issue #1520 [https://github.com/HypothesisWorks/hypothesis/issues/1520]).

Thanks to Graham Williamson for writing this patch at the PyCon
Australia sprints!

3.69.8 - 2018-08-28

This is an internal change which replaces pickle with json to prevent possible
security issues.

Thanks to Vidya Rani D G for writing this patch at the PyCon Australia sprints!

3.69.7 - 2018-08-28

This patch ensures that note() prints the note for every
test case when the verbosity setting is
Verbosity.verbose. At normal verbosity it only prints from the final
test case.

Thanks to Tom McDermott for writing this patch at
the PyCon Australia sprints!

3.69.6 - 2018-08-27

This patch improves the testing of some internal caching. It should have
no user-visible effect.

3.69.5 - 2018-08-27

This change performs a small rename and refactoring in the core engine.
There is no user-visible change.

3.69.4 - 2018-08-27

This change improves the core engine’s ability to avoid unnecessary work,
by consulting its cache of previously-tried inputs in more cases.

3.69.3 - 2018-08-27

This patch handles passing an empty enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum] to
from_type() by returning
nothing(), instead of raising an
internal AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

Thanks to Paul Amazona for writing this patch at the
PyCon Australia sprints!

3.69.2 - 2018-08-23

This patch fixes a small mistake in an internal comment.
There is no user-visible change.

3.69.1 - 2018-08-21

This change fixes a small bug in how the core engine consults its cache
of previously-tried inputs. There is unlikely to be any user-visible change.

3.69.0 - 2018-08-20

This release improves argument validation for stateful testing.

	If the target or targets of a rule() are invalid,
we now raise a useful validation error rather than an internal exception.

	Passing both the target and targets arguments is deprecated -
append the target bundle to the targets tuple of bundles instead.

	Passing the name of a Bundle rather than the Bundle itself is also deprecated.

3.68.3 - 2018-08-20

This is a docs-only patch, fixing some typos and formatting issues.

3.68.2 - 2018-08-19

This change fixes a small bug in how the core engine caches the results of
previously-tried inputs. The effect is unlikely to be noticeable, but it might
avoid unnecessary work in some cases.

3.68.1 - 2018-08-18

This patch documents the from_dtype() function,
which infers a strategy for numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype]s. This is used in
arrays(), but can also be used directly when
creating e.g. Pandas objects.

3.68.0 - 2018-08-15

arrays() now checks that integer and float
values drawn from elements and fill strategies can be safely cast
to the dtype of the array, and emits a warning otherwise (issue #1385 [https://github.com/HypothesisWorks/hypothesis/issues/1385]).

Elements in the resulting array could previously violate constraints on
the elements strategy due to floating-point overflow or truncation of
integers to fit smaller types.

3.67.1 - 2018-08-14

This release contains a tiny refactoring of the internals.
There is no user-visible change.

3.67.0 - 2018-08-10

This release adds a width argument to floats(),
to generate lower-precision floating point numbers for e.g. Numpy arrays.

The generated examples are always instances of Python’s native float
type, which is 64bit, but passing width=32 will ensure that all values
can be exactly represented as 32bit floats. This can be useful to avoid
overflow (to +/- infinity), and for efficiency of generation and shrinking.

Half-precision floats (width=16) are also supported, but require Numpy
if you are running Python 3.5 or earlier.

3.66.33 - 2018-08-10

This release fixes a bug in floats(), where
setting allow_infinity=False and exactly one of min_value and
max_value would allow infinite values to be generated.

3.66.32 - 2018-08-09

This release adds type hints to the @example() and
seed() decorators, and fixes the type hint on
register_type_strategy(). The second argument to
register_type_strategy() must either be a
SearchStrategy, or a callable which takes a type and returns a
SearchStrategy.

3.66.31 - 2018-08-08

Another set of changes designed to improve the performance of shrinking on
large examples. In particular the shrinker should now spend considerably less
time running useless shrinks.

3.66.30 - 2018-08-06

“Bug fixes and performance improvements”.

This release is a fairly major overhaul of the shrinker designed to improve
its behaviour on large examples, especially around stateful testing. You
should hopefully see shrinking become much faster, with little to no quality
degradation (in some cases quality may even improve).

3.66.29 - 2018-08-05

This release fixes two very minor bugs in the core engine:

	it fixes a corner case that was missing in 3.66.28, which
should cause shrinking to work slightly better.

	it fixes some logic for how shrinking interacts with the database that was
causing Hypothesis to be insufficiently aggressive about clearing out old
keys.

3.66.28 - 2018-08-05

This release improves how Hypothesis handles reducing the size of integers’
representation. This change should mostly be invisible as it’s purely about
the underlying representation and not the generated value, but it may result
in some improvements to shrink performance.

3.66.27 - 2018-08-05

This release changes the order in which Hypothesis chooses parts of the test case
to shrink. For typical usage this should be a significant performance improvement on
large examples. It is unlikely to have a major impact on example quality, but where
it does change the result it should usually be an improvement.

3.66.26 - 2018-08-05

This release improves the debugging information that the shrinker emits about
the operations it performs, giving better summary statistics about which
passes resulted in test executions and whether they were successful.

3.66.25 - 2018-08-05

This release fixes several bugs that were introduced to the shrinker in
3.66.24 which would have caused it to behave significantly
less well than advertised. With any luck you should actually see the promised
benefits now.

3.66.24 - 2018-08-03

This release changes how Hypothesis deletes data when shrinking in order to
better handle deletion of large numbers of contiguous sequences. Most tests
should see little change, but this will hopefully provide a significant
speed up for stateful testing.

3.66.23 - 2018-08-02

This release makes some internal changes to enable further improvements to the
shrinker. You may see some changes in the final shrunk examples, but they are
unlikely to be significant.

3.66.22 - 2018-08-01

This release adds some more internal caching to the shrinker. This should cause
a significant speed up for shrinking, especially for stateful testing and
large example sizes.

3.66.21 - 2018-08-01

This patch is for downstream packagers - our tests now pass under
pytest [https://pypi.org/project/pytest/] 3.7.0 (released 2018-07-30). There are no changes
to the source of Hypothesis itself.

3.66.20 - 2018-08-01

This release removes some functionality from the shrinker that was taking a
considerable amount of time and does not appear to be useful any more due to
a number of quality improvements in the shrinker.

You may see some degradation in shrink quality as a result of this, but mostly
shrinking should just get much faster.

3.66.19 - 2018-08-01

This release slightly changes the format of some debugging information emitted
during shrinking, and refactors some of the internal interfaces around that.

3.66.18 - 2018-07-31

This release is a very small internal refactoring which should have no user
visible impact.

3.66.17 - 2018-07-31

This release fixes a bug that could cause an IndexError to be raised from
inside Hypothesis during shrinking. It is likely that it was impossible to
trigger this bug in practice - it was only made visible by some currently
unreleased work.

3.66.16 - 2018-07-31

This release is a very small internal refactoring which should have no user
visible impact.

3.66.15 - 2018-07-31

This release makes Hypothesis’s shrinking faster by removing some redundant
work that it does when minimizing values in its internal representation.

3.66.14 - 2018-07-30

This release expands the deprecation of timeout from 3.16.0 to
also emit the deprecation warning in find or stateful testing.

3.66.13 - 2018-07-30

This release adds an additional shrink pass that is able to reduce the size of
examples in some cases where the transformation is non-obvious. In particular
this will improve the quality of some examples which would have regressed in
3.66.12.

3.66.12 - 2018-07-28

This release changes how we group data together for shrinking. It should result
in improved shrinker performance, especially in stateful testing.

3.66.11 - 2018-07-28

This patch modifies how which rule to run is selected during
rule based stateful testing. This should result in a slight
performance increase during generation and a significant performance and
quality improvement when shrinking.

As a result of this change, some state machines which would previously have
thrown an InvalidDefinition are no longer detected as invalid.

3.66.10 - 2018-07-28

This release weakens some minor functionality in the shrinker that had only
modest benefit and made its behaviour much harder to reason about.

This is unlikely to have much user visible effect, but it is possible that in
some cases shrinking may get slightly slower. It is primarily to make it easier
to work on the shrinker and pave the way for future work.

3.66.9 - 2018-07-26

This release improves the information that Hypothesis emits about its shrinking
when verbosity is set to debug.

3.66.8 - 2018-07-24

This patch includes some minor fixes in the documentation, and updates
the minimum version of pytest [https://pypi.org/project/pytest/] to 3.0 (released August 2016).

3.66.7 - 2018-07-24

This release fixes a bug where difficult to shrink tests could sometimes
trigger an internal assertion error inside the shrinker.

3.66.6 - 2018-07-23

This patch ensures that Hypothesis fully supports Python 3.7, by
upgrading from_type() (issue #1264 [https://github.com/HypothesisWorks/hypothesis/issues/1264])
and fixing some minor issues in our test suite (issue #1148 [https://github.com/HypothesisWorks/hypothesis/issues/1148]).

3.66.5 - 2018-07-22

This patch fixes the online docs for various extras, by ensuring that
their dependencies are installed on readthedocs.io (issue #1326 [https://github.com/HypothesisWorks/hypothesis/issues/1326]).

3.66.4 - 2018-07-20

This release improves the shrinker’s ability to reorder examples.

For example, consider the following test:

import hypothesis.strategies as st
from hypothesis import given

@given(st.text(), st.text())
def test_non_equal(x, y):
 assert x != y

Previously this could have failed with either of x="", y="0" or
x="0", y="". Now it should always fail with x="", y="0".

This will allow the shrinker to produce more consistent results, especially in
cases where test cases contain some ordered collection whose actual order does
not matter.

3.66.3 - 2018-07-20

This patch fixes inference in the builds()
strategy with subtypes of typing.NamedTuple [https://docs.python.org/3/library/typing.html#typing.NamedTuple], where the
__init__ method is not useful for introspection. We now use the
field types instead - thanks to James Uther for identifying this bug.

3.66.2 - 2018-07-19

This release improves the shrinker’s ability to handle situations where there
is an additive constraint between two values.

For example, consider the following test:

import hypothesis.strategies as st
from hypothesis import given

@given(st.integers(), st.integers())
def test_does_not_exceed_100(m, n):
 assert m + n < 100

Previously this could have failed with almost any pair (m, n) with
0 <= m <= n and m + n == 100. Now it should almost always fail with
m=0, n=100.

This is a relatively niche specialisation, but can be useful in situations
where e.g. a bug is triggered by an integer overflow.

3.66.1 - 2018-07-09

This patch fixes a rare bug where an incorrect percentage drawtime
could be displayed for a test, when the system clock was changed during
a test running under Python 2 (we use time.monotonic() [https://docs.python.org/3/library/time.html#time.monotonic]
where it is available to avoid such problems). It also fixes a possible
zero-division error that can occur when the underlying C library
double-rounds an intermediate value in math.fsum() [https://docs.python.org/3/library/math.html#math.fsum] and
gets the least significant bit wrong.

3.66.0 - 2018-07-05

This release improves validation of the alphabet argument to the
text() strategy. The following misuses
are now deprecated, and will be an error in a future version:

	passing an unordered collection (such as set('abc')), which
violates invariants about shrinking and reproducibility

	passing an alphabet sequence with elements that are not strings

	passing an alphabet sequence with elements that are not of length one,
which violates any size constraints that may apply

Thanks to Sushobhit for adding these warnings (issue #1329 [https://github.com/HypothesisWorks/hypothesis/issues/1329]).

3.65.3 - 2018-07-04

This release fixes a mostly theoretical bug where certain usage of the internal
API could trigger an assertion error inside Hypothesis. It is unlikely that
this problem is even possible to trigger through the public API.

3.65.2 - 2018-07-04

This release fixes dependency information for coverage. Previously Hypothesis
would allow installing coverage [https://pypi.org/project/coverage/] with any version, but it only works
with coverage 4.0 or later.

We now specify the correct metadata in our setup.py, so Hypothesis will
only allow installation with compatible versions of coverage.

3.65.1 - 2018-07-03

This patch ensures that stateful tests which raise an
error from a pytest [https://pypi.org/project/pytest/] helper still print the sequence of steps
taken to reach that point (issue #1372 [https://github.com/HypothesisWorks/hypothesis/issues/1372]). This reporting was previously
broken because the helpers inherit directly from BaseException [https://docs.python.org/3/library/exceptions.html#BaseException], and
therefore require special handling to catch without breaking e.g. the use
of ctrl-C to quit the test.

3.65.0 - 2018-06-30

This release deprecates the max_shrinks setting
in favor of an internal heuristic. If you need to avoid shrinking examples,
use the phases setting instead. (issue #1235 [https://github.com/HypothesisWorks/hypothesis/issues/1235])

3.64.2 - 2018-06-27

This release fixes a bug where an internal assertion error could sometimes be
triggered while shrinking a failing test.

3.64.1 - 2018-06-27

This patch fixes type-checking errors in our vendored pretty-printer,
which were ignored by our mypy config but visible for anyone else
(whoops). Thanks to Pi Delport for reporting issue #1359 [https://github.com/HypothesisWorks/hypothesis/issues/1359] so promptly.

3.64.0 - 2018-06-26

This release adds an interface
which can be used to insert a wrapper between the original test function and
@given (issue #1257 [https://github.com/HypothesisWorks/hypothesis/issues/1257]). This will be particularly
useful for test runner extensions such as pytest-trio [https://pypi.org/project/pytest-trio/], but is
not recommended for direct use by other users of Hypothesis.

3.63.0 - 2018-06-26

This release adds a new mechanism to infer strategies for classes
defined using attrs [https://pypi.org/project/attrs/], based on the the type, converter, or
validator of each attribute. This inference is now built in to
builds() and from_type().

On Python 2, from_type() no longer generates
instances of int when passed long, or vice-versa.

3.62.0 - 2018-06-26

This release adds PEP 484 [https://peps.python.org/pep-0484/] type hints to Hypothesis on a provisional
basis, using the comment-based syntax for Python 2 compatibility. You
can read more about our type hints here.

It also adds the py.typed marker specified in PEP 561 [https://peps.python.org/pep-0561/].
After you pip install hypothesis, mypy [https://pypi.org/project/mypy/] 0.590 or later
will therefore type-check your use of our public interface!

3.61.0 - 2018-06-24

This release deprecates the use of settings as a
context manager, the use of which is somewhat ambiguous.

Users should define settings with global state or with the
@settings(...) decorator.

3.60.1 - 2018-06-20

Fixed a bug in generating an instance of a Django model from a
strategy where the primary key is generated as part of the
strategy. See details here.

Thanks to Tim Martin for this contribution.

3.60.0 - 2018-06-20

This release adds the @initialize
decorator for stateful testing (originally discussed in issue #1216 [https://github.com/HypothesisWorks/hypothesis/issues/1216]).
All @initialize rules will be called
once each in an arbitrary order before any normal rule is called.

3.59.3 - 2018-06-19

This is a no-op release to take into account some changes to the release
process. It should have no user visible effect.

3.59.2 - 2018-06-18

This adds support for partially sorting examples which cannot be fully sorted.
For example, [5, 4, 3, 2, 1, 0] with a constraint that the first element needs
to be larger than the last becomes [1, 2, 3, 4, 5, 0].

Thanks to Luke for contributing.

3.59.1 - 2018-06-16

This patch uses random.getstate() [https://docs.python.org/3/library/random.html#random.getstate] and random.setstate() [https://docs.python.org/3/library/random.html#random.setstate]
to restore the PRNG state after @given runs
deterministic tests. Without restoring state, you might have noticed problems
such as issue #1266 [https://github.com/HypothesisWorks/hypothesis/issues/1266]. The fix also applies to stateful testing (issue #702 [https://github.com/HypothesisWorks/hypothesis/issues/702]).

3.59.0 - 2018-06-14

This release adds the emails() strategy,
which generates unicode strings representing an email address.

Thanks to Sushobhit for moving this to the public API (issue #162 [https://github.com/HypothesisWorks/hypothesis/issues/162]).

3.58.1 - 2018-06-13

This improves the shrinker. It can now reorder examples: 3 1 2 becomes 1 2 3.

Thanks to Luke for contributing.

3.58.0 - 2018-06-13

This adds a new extra timezones() strategy
that generates dateutil timezones [https://pypi.org/project/python-dateutil/].

Thanks to Conrad for contributing.

3.57.0 - 2018-05-20

Using an unordered collection with the permutations()
strategy has been deprecated because the order in which e.g. a set shrinks is
arbitrary. This may cause different results between runs.

3.56.10 - 2018-05-16

This release makes hypothesis.settings.define_setting
a private method, which has the effect of hiding it from the
documentation.

3.56.9 - 2018-05-11

This is another release with no functionality changes as part of changes to
Hypothesis’s new release tagging scheme.

3.56.8 - 2018-05-10

This is a release with no functionality changes that moves Hypothesis over to
a new release tagging scheme.

3.56.7 - 2018-05-10

This release provides a performance improvement for most tests, but in
particular users of sampled_from() who don’t
have numpy installed should see a significant performance improvement.

3.56.6 - 2018-05-09

This patch contains further internal work to support Mypy.
There are no user-visible changes… yet.

3.56.5 - 2018-04-22

This patch contains some internal refactoring to run mypy [https://pypi.org/project/mypy/] in CI.
There are no user-visible changes.

3.56.4 - 2018-04-21

This release involves some very minor internal clean up and should have no
user visible effect at all.

3.56.3 - 2018-04-20

This release fixes a problem introduced in 3.56.0 where
setting the hypothesis home directory (through currently undocumented
means) would no longer result in the default database location living
in the new home directory.

3.56.2 - 2018-04-20

This release fixes a problem introduced in 3.56.0 where
setting max_examples to 1 would result in tests
failing with Unsatisfiable. This problem could also occur in other harder
to trigger circumstances (e.g. by setting it to a low value, having a hard to
satisfy assumption, and disabling health checks).

3.56.1 - 2018-04-20

This release fixes a problem that was introduced in 3.56.0:
Use of the HYPOTHESIS_VERBOSITY_LEVEL environment variable was, rather
than deprecated, actually broken due to being read before various setup
the deprecation path needed was done. It now works correctly (and emits a
deprecation warning).

3.56.0 - 2018-04-17

This release deprecates several redundant or internally oriented
settings, working towards an orthogonal set of
configuration options that are widely useful without requiring any
knowledge of our internals (issue #535 [https://github.com/HypothesisWorks/hypothesis/issues/535]).

	Deprecated settings that no longer have any effect are no longer
shown in the __repr__ unless set to a non-default value.

	hypothesis.settings.perform_health_check is deprecated, as it
duplicates suppress_health_check.

	hypothesis.settings.max_iterations is deprecated and disabled,
because we can usually get better behaviour from an internal heuristic
than a user-controlled setting.

	hypothesis.settings.min_satisfying_examples is deprecated and
disabled, due to overlap with the
filter_too_much healthcheck
and poor interaction with max_examples.

	HYPOTHESIS_VERBOSITY_LEVEL is now deprecated. Set
verbosity through the profile system instead.

	Examples tried by find() are now reported at debug
verbosity level (as well as verbose level).

3.55.6 - 2018-04-14

This release fixes a somewhat obscure condition (issue #1230 [https://github.com/HypothesisWorks/hypothesis/issues/1230]) under which you
could occasionally see a failing test trigger an assertion error inside
Hypothesis instead of failing normally.

3.55.5 - 2018-04-14

This patch fixes one possible cause of issue #966 [https://github.com/HypothesisWorks/hypothesis/issues/966]. When running
Python 2 with hash randomisation, passing a bytes [https://docs.python.org/3/library/stdtypes.html#bytes] object
to random.seed() [https://docs.python.org/3/library/random.html#random.seed] would use version=1, which broke
derandomize (because the seed depended on
a randomised hash). If derandomize is
still nondeterministic for you, please open an issue.

3.55.4 - 2018-04-13

This patch makes a variety of minor improvements to the documentation,
and improves a few validation messages for invalid inputs.

3.55.3 - 2018-04-12

This release updates the URL metadata associated with the PyPI package (again).
It has no other user visible effects.

3.55.2 - 2018-04-11

This release updates the URL metadata associated with the PyPI package.
It has no other user visible effects.

3.55.1 - 2018-04-06

This patch relaxes constraints in our tests on the expected values returned
by the standard library function hypot() [https://docs.python.org/3/library/math.html#math.hypot] and the internal
helper function cathetus, to fix near-exact
test failures on some 32-bit systems used by downstream packagers.

3.55.0 - 2018-04-05

This release includes several improvements to the handling of the
database setting.

	The database_file setting was a historical
artefact, and you should just use database
directly.

	The HYPOTHESIS_DATABASE_FILE environment variable is
deprecated, in favor of load_profile() and
the database setting.

	If you have not configured the example database at all and the default
location is not usable (due to e.g. permissions issues), Hypothesis
will fall back to an in-memory database. This is not persisted between
sessions, but means that the defaults work on read-only filesystems.

3.54.0 - 2018-04-04

This release improves the complex_numbers()
strategy, which now supports min_magnitude and max_magnitude
arguments, along with allow_nan and allow_infinity like for
floats().

Thanks to J.J. Green for this feature.

3.53.0 - 2018-04-01

This release removes support for Django 1.8, which reached end of life on
2018-04-01. You can see Django’s release and support schedule
on the Django Project website [https://www.djangoproject.com/download/#supported-versions].

3.52.3 - 2018-04-01

This patch fixes the min_satisfying_examples settings
documentation, by explaining that example shrinking is tracked at the level
of the underlying bytestream rather than the output value.

The output from find() in verbose mode has also been
adjusted - see the example session - to avoid
duplicating lines when the example repr is constant, even if the underlying
representation has been shrunken.

3.52.2 - 2018-03-30

This release improves the output of failures with
rule based stateful testing in two ways:

	The output from it is now usually valid Python code.

	When the same value has two different names because it belongs to two different
bundles, it will now display with the name associated with the correct bundle
for a rule argument where it is used.

3.52.1 - 2018-03-29

This release improves the behaviour of stateful testing
in two ways:

	Previously some runs would run no steps (issue #376 [https://github.com/HypothesisWorks/hypothesis/issues/376]). This should no longer
happen.

	RuleBasedStateMachine tests which used bundles extensively would often shrink
terribly. This should now be significantly improved, though there is likely
a lot more room for improvement.

This release also involves a low level change to how ranges of integers are
handles which may result in other improvements to shrink quality in some cases.

3.52.0 - 2018-03-24

This release deprecates use of @settings(...)
as a decorator, on functions or methods that are not also decorated with
@given. You can still apply these decorators
in any order, though you should only do so once each.

Applying @given twice was already deprecated, and
applying @settings(...) twice is deprecated in
this release and will become an error in a future version. Neither could ever
be used twice to good effect.

Using @settings(...) as the sole decorator on
a test is completely pointless, so this common usage error will become an
error in a future version of Hypothesis.

3.51.0 - 2018-03-24

This release deprecates the average_size argument to
lists() and other collection strategies.
You should simply delete it wherever it was used in your tests, as it
no longer has any effect.

In early versions of Hypothesis, the average_size argument was treated
as a hint about the distribution of examples from a strategy. Subsequent
improvements to the conceptual model and the engine for generating and
shrinking examples mean it is more effective to simply describe what
constitutes a valid example, and let our internals handle the distribution.

3.50.3 - 2018-03-24

This patch contains some internal refactoring so that we can run
with warnings as errors in CI.

3.50.2 - 2018-03-20

This has no user-visible changes except one slight formatting change to one docstring, to avoid a deprecation warning.

3.50.1 - 2018-03-20

This patch fixes an internal error introduced in 3.48.0, where a check
for the Django test runner would expose import-time errors in Django
configuration (issue #1167 [https://github.com/HypothesisWorks/hypothesis/issues/1167]).

3.50.0 - 2018-03-19

This release improves validation of numeric bounds for some strategies.

	integers() and floats()
now raise InvalidArgument if passed a min_value or max_value
which is not an instance of Real [https://docs.python.org/3/library/numbers.html#numbers.Real], instead of
various internal errors.

	floats() now converts its bounding values to
the nearest float above or below the min or max bound respectively, instead
of just casting to float. The old behaviour was incorrect in that you could
generate float(min_value), even when this was less than min_value
itself (possible with eg. fractions).

	When both bounds are provided to floats() but
there are no floats in the interval, such as [(2**54)+1 .. (2**55)-1],
InvalidArgument is raised.

	decimals() gives a more useful error message
if passed a string that cannot be converted to Decimal [https://docs.python.org/3/library/decimal.html#decimal.Decimal]
in a context where this error is not trapped.

Code that previously seemed to work may be explicitly broken if there
were no floats between min_value and max_value (only possible with
non-float bounds), or if a bound was not a Real [https://docs.python.org/3/library/numbers.html#numbers.Real]
number but still allowed in math.isnan [https://docs.python.org/3/library/math.html#math.isnan] (some custom classes
with a __float__ method).

3.49.1 - 2018-03-15

This patch fixes our tests for Numpy dtype strategies on big-endian platforms,
where the strategy behaved correctly but the test assumed that the native byte
order was little-endian.

There is no user impact unless you are running our test suite on big-endian
platforms. Thanks to Graham Inggs for reporting issue #1164 [https://github.com/HypothesisWorks/hypothesis/issues/1164].

3.49.0 - 2018-03-12

This release deprecates passing elements=None to collection strategies,
such as lists().

Requiring lists(nothing()) or builds(list) instead of lists()
means slightly more typing, but also improves the consistency and
discoverability of our API - as well as showing how to compose or
construct strategies in ways that still work in more complex situations.

Passing a nonzero max_size to a collection strategy where the elements
strategy contains no values is now deprecated, and will be an error in a
future version. The equivalent with elements=None is already an error.

3.48.1 - 2018-03-05

This patch will minimize examples that would come out non-minimal in previous versions. Thanks to Kyle Reeve for this patch.

3.48.0 - 2018-03-05

This release improves some “unhappy paths” when using Hypothesis
with the standard library unittest [https://docs.python.org/3/library/unittest.html#module-unittest] module:

	Applying @given to a non-test method which is
overridden from unittest.TestCase [https://docs.python.org/3/library/unittest.html#unittest.TestCase], such as setUp,
raises a new health check.
(issue #991 [https://github.com/HypothesisWorks/hypothesis/issues/991])

	Using subTest() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.subTest] within a test decorated
with @given would leak intermediate results
when tests were run under the unittest [https://docs.python.org/3/library/unittest.html#module-unittest] test runner.
Individual reporting of failing subtests is now disabled during a test
using @given. (issue #1071 [https://github.com/HypothesisWorks/hypothesis/issues/1071])

	@given is still not a class decorator, but the
error message if you try using it on a class has been improved.

As a related improvement, using django.test.TestCase [https://django.readthedocs.io/en/stable/topics/testing/tools.html#django.test.TestCase] with
@given instead of
hypothesis.extra.django.TestCase raises an explicit error instead
of running all examples in a single database transaction.

3.47.0 - 2018-03-02

register_profile now accepts keyword arguments
for specific settings, and the parent settings object is now optional.
Using a name for a registered profile which is not a string was never
suggested, but it is now also deprecated and will eventually be an error.

3.46.2 - 2018-03-01

This release removes an unnecessary branch from the code, and has no user-visible impact.

3.46.1 - 2018-03-01

This changes only the formatting of our docstrings and should have no user-visible effects.

3.46.0 - 2018-02-26

characters() has improved docs about
what arguments are valid, and additional validation logic to raise a
clear error early (instead of e.g. silently ignoring a bad argument).
Categories may be specified as the Unicode ‘general category’
(eg 'Nd'), or as the ‘major category’ (eg ['N', 'Lu']
is equivalent to ['Nd', 'Nl', 'No', 'Lu']).

In previous versions, general categories were supported and all other
input was silently ignored. Now, major categories are supported in
addition to general categories (which may change the behaviour of some
existing code), and all other input is deprecated.

3.45.5 - 2018-02-26

This patch improves strategy inference in hypothesis.extra.django
to account for some validators in addition to field type - see
issue #1116 [https://github.com/HypothesisWorks/hypothesis/issues/1116] for ongoing work in this space.

Specifically, if a CharField [https://django.readthedocs.io/en/stable/ref/models/fields.html#django.db.models.CharField] or
TextField [https://django.readthedocs.io/en/stable/ref/models/fields.html#django.db.models.TextField] has an attached
RegexValidator [https://django.readthedocs.io/en/stable/ref/validators.html#django.core.validators.RegexValidator], we now use
from_regex() instead of
text() as the underlying strategy.
This allows us to generate examples of the default
User [https://django.readthedocs.io/en/stable/ref/contrib/auth.html#django.contrib.auth.models.User] model, closing issue #1112 [https://github.com/HypothesisWorks/hypothesis/issues/1112].

3.45.4 - 2018-02-25

This patch improves some internal debugging information, fixes
a typo in a validation error message, and expands the documentation
for new contributors.

3.45.3 - 2018-02-23

This patch may improve example shrinking slightly for some strategies.

3.45.2 - 2018-02-18

This release makes our docstring style more consistent, thanks to
flake8-docstrings [https://pypi.org/project/flake8-docstrings/]. There are no user-visible changes.

3.45.1 - 2018-02-17

This fixes an indentation issue in docstrings for
datetimes(), dates(),
times(), and
timedeltas().

3.45.0 - 2018-02-13

This release fixes builds() so that target
can be used as a keyword argument for passing values to the target. The target
itself can still be specified as a keyword argument, but that behavior is now
deprecated. The target should be provided as the first positional argument.

3.44.26 - 2018-02-06

This release fixes some formatting issues in the Hypothesis source code.
It should have no externally visible effects.

3.44.25 - 2018-02-05

This release changes the way in which Hypothesis tries to shrink the size of
examples. It probably won’t have much impact, but might make shrinking faster
in some cases. It is unlikely but not impossible that it will change the
resulting examples.

3.44.24 - 2018-01-27

This release fixes dependency information when installing Hypothesis
from a binary “wheel” distribution.

	The install_requires for enum34 [https://pypi.org/project/enum34/] is resolved at install
time, rather than at build time (with potentially different results).

	Django has fixed their python_requires for versions 2.0.0 onward,
simplifying Python2-compatible constraints for downstream projects.

3.44.23 - 2018-01-24

This release improves shrinking in a class of pathological examples that you
are probably never hitting in practice. If you are hitting them in practice
this should be a significant speed up in shrinking. If you are not, you are
very unlikely to notice any difference. You might see a slight slow down and/or
slightly better falsifying examples.

3.44.22 - 2018-01-23

This release fixes a dependency problem. It was possible to install
Hypothesis with an old version of attrs [https://pypi.org/project/attrs/], which would throw a
TypeError as soon as you tried to import hypothesis. Specifically, you
need attrs 16.0.0 or newer.

Hypothesis will now require the correct version of attrs when installing.

3.44.21 - 2018-01-22

This change adds some additional structural information that Hypothesis will
use to guide its search.

You mostly shouldn’t see much difference from this. The two most likely effects
you would notice are:

	Hypothesis stores slightly more examples in its database for passing tests.

	Hypothesis may find new bugs that it was previously missing, but it
probably won’t (this is a basic implementation of the feature that is
intended to support future work. Although it is useful on its own, it’s not
very useful on its own).

3.44.20 - 2018-01-21

This is a small refactoring release that changes how Hypothesis tracks some
information about the boundary of examples in its internal representation.

You are unlikely to see much difference in behaviour, but memory usage and
run time may both go down slightly during normal test execution, and when
failing Hypothesis might print its failing example slightly sooner.

3.44.19 - 2018-01-21

This changes how we compute the default average_size for all collection
strategies. Previously setting a max_size without setting an
average_size would have the seemingly paradoxical effect of making data
generation slower, because it would raise the average size from its default.
Now setting max_size will either leave the default unchanged or lower it
from its default.

If you are currently experiencing this problem, this may make your tests
substantially faster. If you are not, this will likely have no effect on you.

3.44.18 - 2018-01-20

This is a small refactoring release that changes how Hypothesis detects when
the structure of data generation depends on earlier values generated (e.g. when
using flatmap or composite()).
It should not have any observable effect on behaviour.

3.44.17 - 2018-01-15

This release fixes a typo in internal documentation, and has no user-visible impact.

3.44.16 - 2018-01-13

This release improves test case reduction for recursive data structures.
Hypothesis now guarantees that whenever a strategy calls itself recursively
(usually this will happen because you are using deferred()),
any recursive call may replace the top level value. e.g. given a tree structure,
Hypothesis will always try replacing it with a subtree.

Additionally this introduces a new heuristic that may in some circumstances
significantly speed up test case reduction - Hypothesis should be better at
immediately replacing elements drawn inside another strategy with their minimal
possible value.

3.44.15 - 2018-01-13

from_type() can now resolve recursive types
such as binary trees (issue #1004 [https://github.com/HypothesisWorks/hypothesis/issues/1004]). Detection of non-type arguments has
also improved, leading to better error messages in many cases involving
forward references [https://peps.python.org/pep-0484/#forward-references].

3.44.14 - 2018-01-08

This release fixes a bug in the shrinker that prevented the optimisations in
3.44.6 from working in some cases. It would not have worked correctly when
filtered examples were nested (e.g. with a set of integers in some range).

This would not have resulted in any correctness problems, but shrinking may
have been slower than it otherwise could be.

3.44.13 - 2018-01-08

This release changes the average bit length of values drawn from
integers() to be much smaller. Additionally it
changes the shrinking order so that now size is considered before sign - e.g.
-1 will be preferred to +10.

The new internal format for integers required some changes to the minimizer to
make work well, so you may also see some improvements to example quality in
unrelated areas.

3.44.12 - 2018-01-07

This changes Hypothesis’s internal implementation of weighted sampling. This
will affect example distribution and quality, but you shouldn’t see any other
effects.

3.44.11 - 2018-01-06

This is a change to some internals around how Hypothesis handles avoiding
generating duplicate examples and seeking out novel regions of the search
space.

You are unlikely to see much difference as a result of it, but it fixes
a bug where an internal assertion could theoretically be triggered and has some
minor effects on the distribution of examples so could potentially find bugs
that have previously been missed.

3.44.10 - 2018-01-06

This patch avoids creating debug statements when debugging is disabled.
Profiling suggests this is a 5-10% performance improvement (issue #1040 [https://github.com/HypothesisWorks/hypothesis/issues/1040]).

3.44.9 - 2018-01-06

This patch blacklists null characters ('\x00') in automatically created
strategies for Django CharField [https://django.readthedocs.io/en/stable/ref/models/fields.html#django.db.models.CharField] and
TextField [https://django.readthedocs.io/en/stable/ref/models/fields.html#django.db.models.TextField], due to a database issue which
was recently fixed upstream [https://code.djangoproject.com/ticket/28201]
(Hypothesis issue #1045 [https://github.com/HypothesisWorks/hypothesis/issues/1045]).

3.44.8 - 2018-01-06

This release makes the Hypothesis shrinker slightly less greedy in order to
avoid local minima - when it gets stuck, it makes a small attempt to search
around the final example it would previously have returned to find a new
starting point to shrink from. This should improve example quality in some
cases, especially ones where the test data has dependencies among parts of it
that make it difficult for Hypothesis to proceed.

3.44.7 - 2018-01-04

This release adds support for Django 2 [https://www.djangoproject.com/weblog/2017/dec/02/django-20-released/] in
the hypothesis-django extra.

This release drops support for Django 1.10, as it is no longer supported by
the Django team.

3.44.6 - 2018-01-02

This release speeds up test case reduction in many examples by being better at
detecting large shrinks it can use to discard redundant parts of its input.
This will be particularly noticeable in examples that make use of filtering
and for some integer ranges.

3.44.5 - 2018-01-02

Happy new year!

This is a no-op release that updates the year range on all of
the copyright headers in our source to include 2018.

3.44.4 - 2017-12-23

This release fixes issue #1041 [https://github.com/HypothesisWorks/hypothesis/issues/1041], which slowed tests by up to 6%
due to broken caching.

3.44.3 - 2017-12-21

This release improves the shrinker in cases where examples drawn earlier can
affect how much data is drawn later (e.g. when you draw a length parameter in
a composite and then draw that many elements). Examples found in cases like
this should now be much closer to minimal.

3.44.2 - 2017-12-20

This is a pure refactoring release which changes how Hypothesis manages its
set of examples internally. It should have no externally visible effects.

3.44.1 - 2017-12-18

This release fixes issue #997 [https://github.com/HypothesisWorks/hypothesis/issues/997], in which under some circumstances the body of
tests run under Hypothesis would not show up when run under coverage even
though the tests were run and the code they called outside of the test file
would show up normally.

3.44.0 - 2017-12-17

This release adds a new feature: The @reproduce_failure decorator,
designed to make it easy to use Hypothesis’s binary format for examples to
reproduce a problem locally without having to share your example database
between machines.

This also changes when seeds are printed:

	They will no longer be printed for
normal falsifying examples, as there are now adequate ways of reproducing those
for all cases, so it just contributes noise.

	They will once again be printed when reusing examples from the database, as
health check failures should now be more reliable in this scenario so it will
almost always work in this case.

This work was funded by Smarkets [https://smarkets.com/].

3.43.1 - 2017-12-17

This release fixes a bug with Hypothesis’s database management - examples that
were found in the course of shrinking were saved in a way that indicated that
they had distinct causes, and so they would all be retried on the start of the
next test. The intended behaviour, which is now what is implemented, is that
only a bounded subset of these examples would be retried.

3.43.0 - 2017-12-17

HypothesisDeprecationWarning now inherits from
FutureWarning [https://docs.python.org/3/library/exceptions.html#FutureWarning] instead of DeprecationWarning [https://docs.python.org/3/library/exceptions.html#DeprecationWarning],
as recommended by PEP 565 [https://peps.python.org/pep-0565/] for user-facing warnings (issue #618 [https://github.com/HypothesisWorks/hypothesis/issues/618]).
If you have not changed the default warnings settings, you will now see
each distinct HypothesisDeprecationWarning
instead of only the first.

3.42.2 - 2017-12-12

This patch fixes issue #1017 [https://github.com/HypothesisWorks/hypothesis/issues/1017], where instances of a list or tuple subtype
used as an argument to a strategy would be coerced to tuple.

3.42.1 - 2017-12-10

This release has some internal cleanup, which makes reading the code
more pleasant and may shrink large examples slightly faster.

3.42.0 - 2017-12-09

This release deprecates faker-extra, which was designed as a transition
strategy but does not support example shrinking or coverage-guided discovery.

3.41.0 - 2017-12-06

sampled_from() can now sample from
one-dimensional numpy ndarrays. Sampling from multi-dimensional
ndarrays still results in a deprecation warning. Thanks to Charlie
Tanksley for this patch.

3.40.1 - 2017-12-04

This release makes two changes:

	It makes the calculation of some of the metadata that Hypothesis uses for
shrinking occur lazily. This should speed up performance of test case
generation a bit because it no longer calculates information it doesn’t need.

	It improves the shrinker for certain classes of nested examples. e.g. when
shrinking lists of lists, the shrinker is now able to concatenate two
adjacent lists together into a single list. As a result of this change,
shrinking may get somewhat slower when the minimal example found is large.

3.40.0 - 2017-12-02

This release improves how various ways of seeding Hypothesis interact with the
example database:

	Using the example database with seed() is now deprecated.
You should set database=None if you are doing that. This will only warn
if you actually load examples from the database while using @seed.

	The derandomize will behave the same way as
@seed.

	Using --hypothesis-seed will disable use of the database.

	If a test used examples from the database, it will not suggest using a seed
to reproduce it, because that won’t work.

This work was funded by Smarkets [https://smarkets.com/].

3.39.0 - 2017-12-01

This release adds a new health check that checks if the smallest “natural”
possible example of your test case is very large - this will tend to cause
Hypothesis to generate bad examples and be quite slow.

This work was funded by Smarkets [https://smarkets.com/].

3.38.9 - 2017-11-29

This is a documentation release to improve the documentation of shrinking
behaviour for Hypothesis’s strategies.

3.38.8 - 2017-11-29

This release improves the performance of
characters() when using exclude_characters
and from_regex() when using negative character
classes.

The problems this fixes were found in the course of work funded by
Smarkets [https://smarkets.com/].

3.38.7 - 2017-11-29

This is a patch release for from_regex(), which
had a bug in handling of the re.VERBOSE [https://docs.python.org/3/library/re.html#re.VERBOSE] flag (issue #992 [https://github.com/HypothesisWorks/hypothesis/issues/992]).
Flags are now handled correctly when parsing regex.

3.38.6 - 2017-11-28

This patch changes a few byte-string literals from double to single quotes,
thanks to an update in unify [https://pypi.org/project/unify/]. There are no user-visible changes.

3.38.5 - 2017-11-23

This fixes the repr of strategies using lambda that are defined inside
decorators to include the lambda source.

This would mostly have been visible when using the
statistics functionality - lambdas used for e.g. filtering
would have shown up with a <unknown> as their body. This can still happen,
but it should happen less often now.

3.38.4 - 2017-11-22

This release updates the reported statistics so that they
show approximately what fraction of your test run time is spent in data
generation (as opposed to test execution).

This work was funded by Smarkets [https://smarkets.com/].

3.38.3 - 2017-11-21

This is a documentation release, which ensures code examples are up to date
by running them as doctests in CI (issue #711 [https://github.com/HypothesisWorks/hypothesis/issues/711]).

3.38.2 - 2017-11-21

This release changes the behaviour of the deadline
setting when used with data(): Time spent inside
calls to data.draw will no longer be counted towards the deadline time.

As a side effect of some refactoring required for this work, the way flaky
tests are handled has changed slightly. You are unlikely to see much difference
from this, but some error messages will have changed.

This work was funded by Smarkets [https://smarkets.com/].

3.38.1 - 2017-11-21

This patch has a variety of non-user-visible refactorings, removing various
minor warts ranging from indirect imports to typos in comments.

3.38.0 - 2017-11-18

This release overhauls the health check system
in a variety of small ways.
It adds no new features, but is nevertheless a minor release because it changes
which tests are likely to fail health checks.

The most noticeable effect is that some tests that used to fail health checks
will now pass, and some that used to pass will fail. These should all be
improvements in accuracy. In particular:

	New failures will usually be because they are now taking into account things
like use of data() and
assume() inside the test body.

	New failures may also be because for some classes of example the way data
generation performance was measured was artificially faster than real data
generation (for most examples that are hitting performance health checks the
opposite should be the case).

	Tests that used to fail health checks and now pass do so because the health
check system used to run in a way that was subtly different than the main
Hypothesis data generation and lacked some of its support for e.g. large
examples.

If your data generation is especially slow, you may also see your tests get
somewhat faster, as there is no longer a separate health check phase. This will
be particularly noticeable when rerunning test failures.

This work was funded by Smarkets [https://smarkets.com/].

3.37.0 - 2017-11-12

This is a deprecation release for some health check related features.

The following are now deprecated:

	Passing HealthCheck.exception_in_generation to
suppress_health_check. This no longer does
anything even when passed - All errors that occur during data generation
will now be immediately reraised rather than going through the health check
mechanism.

	Passing HealthCheck.random_module to
suppress_health_check. This hasn’t done anything
for a long time, but was never explicitly deprecated. Hypothesis always seeds
the random module when running @given tests, so this
is no longer an error and suppressing it doesn’t do anything.

	Passing non-HealthCheck values in
suppress_health_check. This was previously
allowed but never did anything useful.

In addition, passing a non-iterable value as suppress_health_check
will now raise an error immediately (it would never have worked correctly, but
it would previously have failed later). Some validation error messages have
also been updated.

This work was funded by Smarkets [https://smarkets.com/].

3.36.1 - 2017-11-10

This is a yak shaving release, mostly concerned with our own tests.

While getfullargspec() [https://docs.python.org/3/library/inspect.html#inspect.getfullargspec] was documented as deprecated
in Python 3.5, it never actually emitted a warning. Our code to silence
this (nonexistent) warning has therefore been removed.

We now run our tests with DeprecationWarning as an error, and made some
minor changes to our own tests as a result. This required similar upstream
updates to coverage [https://pypi.org/project/coverage/] and execnet [https://pypi.org/project/execnet/] (a test-time dependency via
pytest-xdist [https://pypi.org/project/pytest-xdist/]).

There is no user-visible change in Hypothesis itself, but we encourage you
to consider enabling deprecations as errors in your own tests.

3.36.0 - 2017-11-06

This release adds a setting to the public API, and does some internal cleanup:

	The derandomize setting is now documented (issue #890 [https://github.com/HypothesisWorks/hypothesis/issues/890])

	Removed - and disallowed - all ‘bare excepts’ in Hypothesis (issue #953 [https://github.com/HypothesisWorks/hypothesis/issues/953])

	Documented the strict setting as deprecated, and
updated the build so our docs always match deprecations in the code.

3.35.0 - 2017-11-06

This minor release supports constraining uuids()
to generate a particular version of UUID [https://docs.python.org/3/library/uuid.html#uuid.UUID] (issue #721 [https://github.com/HypothesisWorks/hypothesis/issues/721]).

Thanks to Dion Misic for this feature.

3.34.1 - 2017-11-02

This patch updates the documentation to suggest
builds(callable) instead of
just(callable()).

3.34.0 - 2017-11-02

Hypothesis now emits deprecation warnings if you apply
@given more than once to a target.

Applying @given repeatedly wraps the target multiple
times. Each wrapper will search the space of of possible parameters separately.
This is equivalent but will be much more inefficient than doing it with a
single call to @given.

For example, instead of
@given(booleans()) @given(integers()), you could write
@given(booleans(), integers())

3.33.1 - 2017-11-02

This is a bugfix release:

	builds() would try to infer a strategy for
required positional arguments of the target from type hints, even if they
had been given to builds() as positional
arguments (issue #946 [https://github.com/HypothesisWorks/hypothesis/issues/946]). Now it only infers missing required arguments.

	An internal introspection function wrongly reported self as a required
argument for bound methods, which might also have affected
builds(). Now it knows better.

3.33.0 - 2017-10-16

This release supports strategy inference for more Django field types - you can now omit an argument for
Date, Time, Duration, Slug, IP Address, and UUID fields. (issue #642 [https://github.com/HypothesisWorks/hypothesis/issues/642])

Strategy generation for fields with grouped choices now selects choices from
each group, instead of selecting from the group names.

3.32.2 - 2017-10-15

This patch removes the mergedb tool, introduced in Hypothesis 1.7.1
on an experimental basis. It has never actually worked, and the new
Hypothesis example database is designed to make such a
tool unnecessary.

3.32.1 - 2017-10-13

This patch has two improvements for strategies based on enumerations.

	from_type() now handles enumerations correctly,
delegating to sampled_from(). Previously it
noted that Enum.__init__ has no required arguments and therefore delegated
to builds(), which would subsequently fail.

	When sampling from an enum.Flag [https://docs.python.org/3/library/enum.html#enum.Flag], we also generate combinations
of members. Eg for Flag('Permissions', 'READ, WRITE, EXECUTE') we can now
generate, Permissions.READ, Permissions.READ|WRITE, and so on.

3.32.0 - 2017-10-09

This changes the default value of
the use_coverage setting to True when
running on pypy (it was already True on CPython).

It was previously set to False because we expected it to be too slow, but
recent benchmarking shows that actually performance of the feature on pypy is
fairly acceptable - sometimes it’s slower than on CPython, sometimes it’s
faster, but it’s generally within a factor of two either way.

3.31.6 - 2017-10-08

This patch improves the quality of strategies inferred from Numpy dtypes:

	Integer dtypes generated examples with the upper half of their (non-sign) bits
set to zero. The inferred strategies can now produce any representable integer.

	Fixed-width unicode- and byte-string dtypes now cap the internal example
length, which should improve example and shrink quality.

	Numpy arrays can only store fixed-size strings internally, and allow shorter
strings by right-padding them with null bytes. Inferred string strategies
no longer generate such values, as they can never be retrieved from an array.
This improves shrinking performance by skipping useless values.

This has already been useful in Hypothesis - we found an overflow bug in our
Pandas support, and as a result indexes() and
range_indexes() now check that min_size
and max_size are at least zero.

3.31.5 - 2017-10-08

This release fixes a performance problem in tests where
the use_coverage setting is True.

Tests experience a slow-down proportionate to the amount of code they cover.
This is still the case, but the factor is now low enough that it should be
unnoticeable. Previously it was large and became much larger in 3.30.4.

3.31.4 - 2017-10-08

from_type() failed with a very confusing error
if passed a NewType [https://docs.python.org/3/library/typing.html#typing.NewType] (issue #901 [https://github.com/HypothesisWorks/hypothesis/issues/901]). These pseudo-types
are now unwrapped correctly, and strategy inference works as expected.

3.31.3 - 2017-10-06

This release makes some small optimisations to our use of coverage that should
reduce constant per-example overhead. This is probably only noticeable on
examples where the test itself is quite fast. On no-op tests that don’t test
anything you may see up to a fourfold speed increase (which is still
significantly slower than without coverage). On more realistic tests the speed
up is likely to be less than that.

3.31.2 - 2017-09-30

This release fixes some formatting and small typos/grammar issues in the
documentation, specifically the page docs/settings.rst, and the inline docs
for the various settings.

3.31.1 - 2017-09-30

This release improves the handling of deadlines so that they act better with
the shrinking process. This fixes issue #892 [https://github.com/HypothesisWorks/hypothesis/issues/892].

This involves two changes:

	The deadline is raised during the initial generation and shrinking, and then
lowered to the set value for final replay. This restricts our attention to
examples which exceed the deadline by a more significant margin, which
increases their reliability.

	When despite the above a test still becomes flaky because it is
significantly faster on rerun than it was on its first run, the error
message is now more explicit about the nature of this problem, and includes
both the initial test run time and the new test run time.

In addition, this release also clarifies the documentation of the deadline
setting slightly to be more explicit about where it applies.

This work was funded by Smarkets [https://smarkets.com/].

3.31.0 - 2017-09-29

This release blocks installation of Hypothesis on Python 3.3, which
reached its end of life date on 2017-09-29 [https://peps.python.org/pep-0398/].

This should not be of interest to anyone but downstream maintainers -
if you are affected, migrate to a secure version of Python as soon as
possible or at least seek commercial support.

3.30.4 - 2017-09-27

This release makes several changes:

	It significantly improves Hypothesis’s ability to use coverage information
to find interesting examples.

	It reduces the default max_examples setting from 200 to 100. This takes
advantage of the improved algorithm meaning fewer examples are typically
needed to get the same testing and is sufficiently better at covering
interesting behaviour, and offsets some of the performance problems of
running under coverage.

	Hypothesis will always try to start its testing with an example that is near
minimized.

The new algorithm for 1 also makes some changes to Hypothesis’s low level data
generation which apply even with coverage turned off. They generally reduce the
total amount of data generated, which should improve test performance somewhat.
Between this and 3 you should see a noticeable reduction in test runtime (how
much so depends on your tests and how much example size affects their
performance. On our benchmarks, where data generation dominates, we saw up to
a factor of two performance improvement, but it’s unlikely to be that large.

3.30.3 - 2017-09-25

This release fixes some formatting and small typos/grammar issues in the
documentation, specifically the page docs/details.rst, and some inline
docs linked from there.

3.30.2 - 2017-09-24

This release changes Hypothesis’s caching approach for functions in
hypothesis.strategies. Previously it would have cached extremely
aggressively and cache entries would never be evicted. Now it adopts a
least-frequently used, least recently used key invalidation policy, and is
somewhat more conservative about which strategies it caches.

Workloads which create strategies based on dynamic values, e.g. by using
flatmap or composite(),
will use significantly less memory.

3.30.1 - 2017-09-22

This release fixes a bug where when running with
the use_coverage=True setting inside an
existing running instance of coverage, Hypothesis would frequently put files
that the coveragerc excluded in the report for the enclosing coverage.

3.30.0 - 2017-09-20

This release introduces two new features:

	When a test fails, either with a health check failure or a falsifying example,
Hypothesis will print out a seed that led to that failure, if the test is not
already running with a fixed seed. You can then recreate that failure using either
the @seed decorator or (if you are running pytest) with --hypothesis-seed.

	pytest [https://pypi.org/project/pytest/] users can specify a seed to use for @given based tests by passing
the --hypothesis-seed command line argument.

This work was funded by Smarkets [https://smarkets.com/].

3.29.0 - 2017-09-19

This release makes Hypothesis coverage aware. Hypothesis now runs all test
bodies under coverage, and uses this information to guide its testing.

The use_coverage setting can be used to disable
this behaviour if you want to test code that is sensitive to coverage being
enabled (either because of performance or interaction with the trace function).

The main benefits of this feature are:

	Hypothesis now observes when examples it discovers cover particular lines
or branches and stores them in the database for later.

	Hypothesis will make some use of this information to guide its exploration of
the search space and improve the examples it finds (this is currently used
only very lightly and will likely improve significantly in future releases).

This also has the following side-effects:

	Hypothesis now has an install time dependency on the coverage [https://pypi.org/project/coverage/] package.

	Tests that are already running Hypothesis under coverage will likely get
faster.

	Tests that are not running under coverage now run their test bodies under
coverage by default.

This feature is only partially supported under pypy. It is significantly slower
than on CPython and is turned off by default as a result, but it should still
work correctly if you want to use it.

3.28.3 - 2017-09-18

This release is an internal change that affects how Hypothesis handles
calculating certain properties of strategies.

The primary effect of this is that it fixes a bug where use of
deferred() could sometimes trigger an internal assertion
error. However the fix for this bug involved some moderately deep changes to
how Hypothesis handles certain constructs so you may notice some additional
knock-on effects.

In particular the way Hypothesis handles drawing data from strategies that
cannot generate any values has changed to bail out sooner than it previously
did. This may speed up certain tests, but it is unlikely to make much of a
difference in practice for tests that were not already failing with
Unsatisfiable.

3.28.2 - 2017-09-18

This is a patch release that fixes a bug in the hypothesis.extra.pandas
documentation where it incorrectly referred to column()
instead of columns().

3.28.1 - 2017-09-16

This is a refactoring release. It moves a number of internal uses
of namedtuple() [https://docs.python.org/3/library/collections.html#collections.namedtuple] over to using attrs based classes, and removes a couple
of internal namedtuple classes that were no longer in use.

It should have no user visible impact.

3.28.0 - 2017-09-15

This release adds support for testing pandas [https://pypi.org/project/pandas/] via the hypothesis.extra.pandas
module.

It also adds a dependency on attrs [https://pypi.org/project/attrs/].

This work was funded by Stripe [https://stripe.com/].

3.27.1 - 2017-09-14

This release fixes some formatting and broken cross-references in the
documentation, which includes editing docstrings - and thus a patch release.

3.27.0 - 2017-09-13

This release introduces a deadline
setting to Hypothesis.

When set this turns slow tests into errors. By default it is unset but will
warn if you exceed 200ms, which will become the default value in a future
release.

This work was funded by Smarkets [https://smarkets.com/].

3.26.0 - 2017-09-12

Hypothesis now emits deprecation warnings if you are using the legacy
SQLite example database format, or the tool for merging them. These were
already documented as deprecated, so this doesn’t change their deprecation
status, only that we warn about it.

3.25.1 - 2017-09-12

This release fixes a bug with generating numpy datetime and timedelta types [https://numpy.org/doc/stable/reference/arrays.datetime.html]:
When inferring the strategy from the dtype, datetime and timedelta dtypes with
sub-second precision would always produce examples with one second resolution.
Inferring a strategy from a time dtype will now always produce example with the
same precision.

3.25.0 - 2017-09-12

This release changes how Hypothesis shrinks and replays examples to take into
account that it can encounter new bugs while shrinking the bug it originally
found. Previously it would end up replacing the originally found bug with the
new bug and show you only that one. Now it is (often) able to recognise when
two bugs are distinct and when it finds more than one will show both.

3.24.2 - 2017-09-11

This release removes the (purely internal and no longer useful)
strategy_test_suite function and the corresponding strategytests module.

3.24.1 - 2017-09-06

This release improves the reduction of examples involving floating point
numbers to produce more human readable examples.

It also has some general purpose changes to the way the minimizer works
internally, which may see some improvement in quality and slow down of test
case reduction in cases that have nothing to do with floating point numbers.

3.24.0 - 2017-09-05

Hypothesis now emits deprecation warnings if you use some_strategy.example() inside a
test function or strategy definition (this was never intended to be supported,
but is sufficiently widespread that it warrants a deprecation path).

3.23.3 - 2017-09-05

This is a bugfix release for decimals()
with the places argument.

	No longer fails health checks (issue #725 [https://github.com/HypothesisWorks/hypothesis/issues/725], due to internal filtering)

	Specifying a min_value and max_value without any decimals with
places places between them gives a more useful error message.

	Works for any valid arguments, regardless of the decimal precision context.

3.23.2 - 2017-09-01

This is a small refactoring release that removes a now-unused parameter to an
internal API. It shouldn’t have any user visible effect.

3.23.1 - 2017-09-01

Hypothesis no longer propagates the dynamic scope of settings into strategy
definitions.

This release is a small change to something that was never part of the public
API and you will almost certainly not notice any effect unless you’re doing
something surprising, but for example the following code will now give a
different answer in some circumstances:

import hypothesis.strategies as st
from hypothesis import settings

CURRENT_SETTINGS = st.builds(lambda: settings.default)

(We don’t actually encourage you writing code like this)

Previously this would have generated the settings that were in effect at the
point of definition of CURRENT_SETTINGS. Now it will generate the settings
that are used for the current test.

It is very unlikely to be significant enough to be visible, but you may also
notice a small performance improvement.

3.23.0 - 2017-08-31

This release adds a unique argument to arrays()
which behaves the same ways as the corresponding one for
lists(), requiring all of the elements in the
generated array to be distinct.

3.22.2 - 2017-08-29

This release fixes an issue where Hypothesis would raise a TypeError when
using the datetime-related strategies if running with PYTHONOPTIMIZE=2.
This bug was introduced in 3.20.0. (See issue #822 [https://github.com/HypothesisWorks/hypothesis/issues/822])

3.22.1 - 2017-08-28

Hypothesis now transparently handles problems with an internal unicode cache,
including file truncation or read-only filesystems (issue #767 [https://github.com/HypothesisWorks/hypothesis/issues/767]).
Thanks to Sam Hames for the patch.

3.22.0 - 2017-08-26

This release provides what should be a substantial performance improvement to
numpy arrays generated using provided numpy support,
and adds a new fill_value argument to arrays()
to control this behaviour.

This work was funded by Stripe [https://stripe.com/].

3.21.3 - 2017-08-26

This release fixes some extremely specific circumstances that probably have
never occurred in the wild where users of
deferred() might have seen a RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] from
too much recursion, usually in cases where no valid example could have been
generated anyway.

3.21.2 - 2017-08-25

This release fixes some minor bugs in argument validation:

	hypothesis.extra.numpy dtype strategies would raise an internal error
instead of an InvalidArgument exception when passed an invalid
endianness specification.

	fractions() would raise an internal error instead of an InvalidArgument
if passed float("nan") as one of its bounds.

	The error message for passing float("nan") as a bound to various
strategies has been improved.

	Various bound arguments will now raise InvalidArgument in cases where
they would previously have raised an internal TypeError or
ValueError from the relevant conversion function.

	streaming() would not have emitted a
deprecation warning when called with an invalid argument.

3.21.1 - 2017-08-24

This release fixes a bug where test failures that were the result of
an @example would print an extra stack trace before re-raising the
exception.

3.21.0 - 2017-08-23

This release deprecates Hypothesis’s strict mode, which turned Hypothesis’s
deprecation warnings into errors. Similar functionality can be achieved
by using simplefilter('error', HypothesisDeprecationWarning) [https://docs.python.org/3/library/warnings.html#warnings.simplefilter].

3.20.0 - 2017-08-22

This release renames the relevant arguments on the
datetimes(), dates(),
times(), and timedeltas()
strategies to min_value and max_value, to make them consistent with the
other strategies in the module.

The old argument names are still supported but will emit a deprecation warning
when used explicitly as keyword arguments. Arguments passed positionally will
go to the new argument names and are not deprecated.

3.19.3 - 2017-08-22

This release provides a major overhaul to the internals of how Hypothesis
handles shrinking.

This should mostly be visible in terms of getting better examples for tests
which make heavy use of composite(),
data() or flatmap where the data
drawn depends a lot on previous choices, especially where size parameters are
affected. Previously Hypothesis would have struggled to reliably produce
good examples here. Now it should do much better. Performance should also be
better for examples with a non-zero min_size.

You may see slight changes to example generation (e.g. improved example
diversity) as a result of related changes to internals, but they are unlikely
to be significant enough to notice.

3.19.2 - 2017-08-21

This release fixes two bugs in hypothesis.extra.numpy:

	unicode_string_dtypes() didn’t work at all due
to an incorrect dtype specifier. Now it does.

	Various impossible conditions would have been accepted but would error when
they fail to produced any example. Now they raise an explicit InvalidArgument
error.

3.19.1 - 2017-08-21

This is a bugfix release for issue #739 [https://github.com/HypothesisWorks/hypothesis/issues/739], where bounds for
fractions() or floating-point
decimals() were not properly converted to
integers before passing them to the integers strategy.
This excluded some values that should have been possible, and could
trigger internal errors if the bounds lay between adjacent integers.

You can now bound fractions() with two
arbitrarily close fractions.

It is now an explicit error to supply a min_value, max_value, and
max_denominator to fractions() where the value
bounds do not include a fraction with denominator at most max_denominator.

3.19.0 - 2017-08-20

This release adds the from_regex() strategy,
which generates strings that contain a match of a regular expression.

Thanks to Maxim Kulkin for creating the
hypothesis-regex [https://github.com/maximkulkin/hypothesis-regex]
package and then helping to upstream it! (issue #662 [https://github.com/HypothesisWorks/hypothesis/issues/662])

3.18.5 - 2017-08-18

This is a bugfix release for integers().
Previously the strategy would hit an internal assertion if passed non-integer
bounds for min_value and max_value that had no integers between them.
The strategy now raises InvalidArgument instead.

3.18.4 - 2017-08-18

Release to fix a bug where mocks can be used as test runners under certain
conditions. Specifically, if a mock is injected into a test via pytest
fixtures or patch decorators, and that mock is the first argument in the
list, hypothesis will think it represents self and turns the mock
into a test runner. If this happens, the affected test always passes
because the mock is executed instead of the test body. Sometimes, it
will also fail health checks.

Fixes issue #491 [https://github.com/HypothesisWorks/hypothesis/issues/491] and a section of issue #198 [https://github.com/HypothesisWorks/hypothesis/issues/198].
Thanks to Ben Peterson for this bug fix.

3.18.3 - 2017-08-17

This release should improve the performance of some tests which
experienced a slow down as a result of the 3.13.0 release.

Tests most likely to benefit from this are ones that make extensive
use of min_size parameters, but others may see some improvement
as well.

3.18.2 - 2017-08-16

This release fixes a bug introduced in 3.18.0. If the arguments
include_characters and exclude_characters to
characters() contained overlapping elements, then an
InvalidArgument exception would be raised.

Thanks to Zac Hatfield-Dodds for reporting and fixing this.

3.18.1 - 2017-08-14

This is a bug fix release to fix issue #780 [https://github.com/HypothesisWorks/hypothesis/issues/780], where
sets() and similar would trigger health check
errors if their element strategy could only produce one element (e.g.
if it was just()).

3.18.0 - 2017-08-13

This is a feature release:

	characters() now accepts
include_characters, particular characters which will be added to those
it produces. (issue #668 [https://github.com/HypothesisWorks/hypothesis/issues/668])

	A bug fix for the internal function _union_interval_lists(), and a rename
to _union_intervals(). It now correctly handles all cases where intervals
overlap, and it always returns the result as a tuple for tuples.

Thanks to Alex Willmer for these.

3.17.0 - 2017-08-07

This release documents the previously undocumented phases feature,
making it part of the public API. It also updates how the example
database is used. Principally:

	The reuse phase will now correctly control whether examples
from the database are run (it previously did exactly the wrong thing and
controlled whether examples would be saved).

	Hypothesis will no longer try to rerun all previously failing examples.
Instead it will replay the smallest previously failing example and a
selection of other examples that are likely to trigger any other bugs that
will found. This prevents a previous failure from dominating your tests
unnecessarily.

	As a result of the previous change, Hypothesis will be slower about clearing
out old examples from the database that are no longer failing (because it can
only clear out ones that it actually runs).

3.16.1 - 2017-08-07

This release makes an implementation change to how Hypothesis handles certain
internal constructs.

The main effect you should see is improvement to the behaviour and performance
of collection types, especially ones with a min_size parameter. Many cases
that would previously fail due to being unable to generate enough valid
examples will now succeed, and other cases should run slightly faster.

3.16.0 - 2017-08-04

This release introduces a deprecation of the timeout feature. This results in
the following changes:

	Creating a settings object with an explicit timeout will emit a deprecation
warning.

	If your test stops because it hits the timeout (and has not found a bug) then
it will emit a deprecation warning.

	There is a new value unlimited which you can import from hypothesis.
settings(timeout=unlimited) will not cause a deprecation warning.

	There is a new health check, hung_test, which will trigger after a test
has been running for five minutes if it is not suppressed.

3.15.0 - 2017-08-04

This release deprecates two strategies, choices() and streaming().

Both of these are somewhat confusing to use and are entirely redundant since the
introduction of the data() strategy for interactive
drawing in tests, and their use should be replaced with direct use of
data() instead.

3.14.2 - 2017-08-03

This fixes a bug where Hypothesis would not work correctly on Python 2.7 if you
had the typing [https://docs.python.org/3/library/typing.html#module-typing] module backport [https://pypi.org/project/typing/] installed.

3.14.1 - 2017-08-02

This raises the maximum depth at which Hypothesis starts cutting off data
generation to a more reasonable value which it is harder to hit by accident.

This resolves (issue #751 [https://github.com/HypothesisWorks/hypothesis/issues/751]), in which some examples which previously worked
would start timing out, but it will also likely improve the data generation
quality for complex data types.

3.14.0 - 2017-07-23

Hypothesis now understands inline type annotations (issue #293 [https://github.com/HypothesisWorks/hypothesis/issues/293]):

	If the target of builds() has type annotations,
a default strategy for missing required arguments is selected based on the
type. Type-based strategy selection will only override a default if you
pass hypothesis.infer as a keyword argument.

	If @given wraps a function with type annotations,
you can pass infer as a keyword argument and the
appropriate strategy will be substituted.

	You can check what strategy will be inferred for a type with the new
from_type() function.

	register_type_strategy() teaches Hypothesis
which strategy to infer for custom or unknown types. You can provide a
strategy, or for more complex cases a function which takes the type and
returns a strategy.

3.13.1 - 2017-07-20

This is a bug fix release for issue #514 [https://github.com/HypothesisWorks/hypothesis/issues/514] - Hypothesis would continue running
examples after a SkipTest [https://docs.python.org/3/library/unittest.html#unittest.SkipTest] exception was raised,
including printing a falsifying example. Skip exceptions from the standard
unittest [https://docs.python.org/3/library/unittest.html#module-unittest] module, and pytest, nose, or unittest2
modules now abort the test immediately without printing output.

3.13.0 - 2017-07-16

This release has two major aspects to it: The first is the introduction of
deferred(), which allows more natural definition
of recursive (including mutually recursive) strategies.

The second is a number of engine changes designed to support this sort of
strategy better. These should have a knock-on effect of also improving the
performance of any existing strategies that currently generate a lot of data
or involve heavy nesting by reducing their typical example size.

3.12.0 - 2017-07-07

This release makes some major internal changes to how Hypothesis represents
data internally, as a prelude to some major engine changes that should improve
data quality. There are no API changes, but it’s a significant enough internal
change that a minor version bump seemed warranted.

User facing impact should be fairly mild, but includes:

	All existing examples in the database will probably be invalidated. Hypothesis
handles this automatically, so you don’t need to do anything, but if you see
all your examples disappear that’s why.

	Almost all data distributions have changed significantly. Possibly for the better,
possibly for the worse. This may result in new bugs being found, but it may
also result in Hypothesis being unable to find bugs it previously did.

	Data generation may be somewhat faster if your existing bottleneck was in
draw_bytes (which is often the case for large examples).

	Shrinking will probably be slower, possibly significantly.

If you notice any effects you consider to be a significant regression, please
open an issue about them.

3.11.6 - 2017-06-19

This release involves no functionality changes, but is the first to ship wheels
as well as an sdist.

3.11.5 - 2017-06-18

This release provides a performance improvement to shrinking. For cases where
there is some non-trivial “boundary” value (e.g. the bug happens for all values
greater than some other value), shrinking should now be substantially faster.
Other types of bug will likely see improvements too.

This may also result in some changes to the quality of the final examples - it
may sometimes be better, but is more likely to get slightly worse in some edge
cases. If you see any examples where this happens in practice, please report
them.

3.11.4 - 2017-06-17

This is a bugfix release: Hypothesis now prints explicit examples when
running in verbose mode. (issue #313 [https://github.com/HypothesisWorks/hypothesis/issues/313])

3.11.3 - 2017-06-11

This is a bugfix release: Hypothesis no longer emits a warning if you try to
use sampled_from() with
collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]. (issue #688 [https://github.com/HypothesisWorks/hypothesis/issues/688])

3.11.2 - 2017-06-10

This is a documentation release. Several outdated snippets have been updated
or removed, and many cross-references are now hyperlinks.

3.11.1 - 2017-05-28

This is a minor ergonomics release. Tracebacks shown by pytest no longer
include Hypothesis internals for test functions decorated with @given.

3.11.0 - 2017-05-23

This is a feature release, adding datetime-related strategies to the core strategies.

timezones() allows you to sample pytz timezones from
the Olsen database. Use directly in a recipe for tz-aware datetimes, or
compose with none() to allow a mix of aware and naive output.

The new dates(), times(),
datetimes(), and timedeltas()
strategies are all constrained by objects of their type.
This means that you can generate dates bounded by a single day
(i.e. a single date), or datetimes constrained to the microsecond.

times() and datetimes()
take an optional timezones= argument, which
defaults to none() for naive times. You can use our extra strategy
based on pytz, or roll your own timezones strategy with dateutil or even
the standard library.

The old dates, times, and datetimes strategies in
hypothesis.extra.datetimes are deprecated in favor of the new
core strategies, which are more flexible and have no dependencies.

3.10.0 - 2017-05-22

Hypothesis now uses inspect.getfullargspec() [https://docs.python.org/3/library/inspect.html#inspect.getfullargspec] internally.
On Python 2, there are no visible changes.

On Python 3 @given and @composite
now preserve PEP 3107 [https://peps.python.org/pep-3107/] annotations on the
decorated function. Keyword-only arguments are now either handled correctly
(e.g. @composite), or caught in validation instead of silently discarded
or raising an unrelated error later (e.g. @given).

3.9.1 - 2017-05-22

This is a bugfix release: the default field mapping for a DateTimeField in the
Django extra now respects the USE_TZ setting when choosing a strategy.

3.9.0 - 2017-05-19

This is feature release, expanding the capabilities of the
decimals() strategy.

	The new (optional) places argument allows you to generate decimals with
a certain number of places (e.g. cents, thousandths, satoshis).

	If allow_infinity is None, setting min_bound no longer excludes positive
infinity and setting max_value no longer excludes negative infinity.

	All of NaN, -Nan, sNaN, and -sNaN may now be drawn if
allow_nan is True, or if allow_nan is None and min_value or max_value is None.

	min_value and max_value may be given as decimal strings, e.g. "1.234".

3.8.5 - 2017-05-16

Hypothesis now imports sqlite3 [https://docs.python.org/3/library/sqlite3.html#module-sqlite3] when a SQLite database is used, rather
than at module load, improving compatibility with Python implementations
compiled without SQLite support (such as BSD or Jython).

3.8.4 - 2017-05-16

This is a compatibility bugfix release. sampled_from()
no longer raises a deprecation warning when sampling from an
enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum], as all enums have a reliable iteration order.

3.8.3 - 2017-05-09

This release removes a version check for older versions of pytest [https://pypi.org/project/pytest/] when using
the Hypothesis pytest plugin. The pytest plugin will now run unconditionally
on all versions of pytest. This breaks compatibility with any version of pytest
prior to 2.7.0 (which is more than two years old).

The primary reason for this change is that the version check was a frequent
source of breakage when pytest change their versioning scheme. If you are not
working on pytest itself and are not running a very old version of it, this
release probably doesn’t affect you.

3.8.2 - 2017-04-26

This is a code reorganisation release that moves some internal test helpers
out of the main source tree so as to not have changes to them trigger releases
in future.

3.8.1 - 2017-04-26

This is a documentation release. Almost all code examples are now doctests
checked in CI, eliminating stale examples.

3.8.0 - 2017-04-23

This is a feature release, adding the iterables() strategy, equivalent
to lists(...).map(iter) but with a much more useful repr. You can use
this strategy to check that code doesn’t accidentally depend on sequence
properties such as indexing support or repeated iteration.

3.7.4 - 2017-04-22

This patch fixes a bug in 3.7.3, where using
@example and a pytest fixture in the same test
could cause the test to fail to fill the arguments, and throw a TypeError.

3.7.3 - 2017-04-21

This release should include no user visible changes and is purely a refactoring
release. This modularises the behaviour of the core given() function, breaking
it up into smaller and more accessible parts, but its actual behaviour should
remain unchanged.

3.7.2 - 2017-04-21

This reverts an undocumented change in 3.7.1 which broke installation on
debian stable: The specifier for the hypothesis[django] extra_requires had
introduced a wild card, which was not supported on the default version of pip.

3.7.1 - 2017-04-21

This is a bug fix and internal improvements release.

	In particular Hypothesis now tracks a tree of where it has already explored.
This allows it to avoid some classes of duplicate examples, and significantly
improves the performance of shrinking failing examples by allowing it to
skip some shrinks that it can determine can’t possibly work.

	Hypothesis will no longer seed the global random arbitrarily unless you have
asked it to using random_module()

	Shrinking would previously have not worked correctly in some special cases
on Python 2, and would have resulted in suboptimal examples.

3.7.0 - 2017-03-20

This is a feature release.

New features:

	Rule based stateful testing now has an @invariant decorator that specifies
methods that are run after init and after every step, allowing you to
encode properties that should be true at all times. Thanks to Tom Prince for
this feature.

	The decimals() strategy now supports allow_nan and allow_infinity flags.

	There are significantly more strategies available for numpy, including for
generating arbitrary data types. Thanks to Zac Hatfield Dodds for this
feature.

	When using the data() strategy you can now add a label as an argument to
draw(), which will be printed along with the value when an example fails.
Thanks to Peter Inglesby for this feature.

Bug fixes:

	Bug fix: composite() now preserves functions’ docstrings.

	The build is now reproducible and doesn’t depend on the path you build it
from. Thanks to Chris Lamb for this feature.

	numpy strategies for the void data type did not work correctly. Thanks to
Zac Hatfield Dodds for this fix.

There have also been a number of performance optimizations:

	The permutations() strategy is now significantly faster to use for large
lists (the underlying algorithm has gone from O(n^2) to O(n)).

	Shrinking of failing test cases should have got significantly faster in
some circumstances where it was previously struggling for a long time.

	Example generation now involves less indirection, which results in a small
speedup in some cases (small enough that you won’t really notice it except in
pathological cases).

3.6.1 - 2016-12-20

This release fixes a dependency problem and makes some small behind the scenes
improvements.

	The fake-factory dependency was renamed to faker. If you were depending on
it through hypothesis[django] or hypothesis[fake-factory] without pinning it
yourself then it would have failed to install properly. This release changes
it so that hypothesis[fakefactory] (which can now also be installed as
hypothesis[faker]) will install the renamed faker package instead.

	This release also removed the dependency of hypothesis[django] on
hypothesis[fakefactory] - it was only being used for emails. These now use
a custom strategy that isn’t from fakefactory. As a result you should also
see performance improvements of tests which generated User objects or other
things with email fields, as well as better shrinking of email addresses.

	The distribution of code using nested calls to one_of() or the | operator for
combining strategies has been improved, as branches are now flattened to give
a more uniform distribution.

	Examples using composite() or .flatmap should now shrink better. In particular
this will affect things which work by first generating a length and then
generating that many items, which have historically not shrunk very well.

3.6.0 - 2016-10-31

This release reverts Hypothesis to its old pretty printing of lambda functions
based on attempting to extract the source code rather than decompile the bytecode.
This is unfortunately slightly inferior in some cases and may result in you
occasionally seeing things like lambda x: <unknown> in statistics reports and
strategy reprs.

This removes the dependencies on uncompyle6, xdis and spark-parser.

The reason for this is that the new functionality was based on uncompyle6, which
turns out to introduce a hidden GPLed dependency - it in turn depended on xdis,
and although the library was licensed under the MIT license, it contained some
GPL licensed source code and thus should have been released under the GPL.

My interpretation is that Hypothesis itself was never in violation of the GPL
(because the license it is under, the Mozilla Public License v2, is fully
compatible with being included in a GPL licensed work), but I have not consulted
a lawyer on the subject. Regardless of the answer to this question, adding a
GPLed dependency will likely cause a lot of users of Hypothesis to inadvertently
be in violation of the GPL.

As a result, if you are running Hypothesis 3.5.x you really should upgrade to
this release immediately.

3.5.3 - 2016-10-05

This is a bug fix release.

Bugs fixed:

	If the same test was running concurrently in two processes and there were
examples already in the test database which no longer failed, Hypothesis
would sometimes fail with a FileNotFoundError (IOError on Python 2) because
an example it was trying to read was deleted before it was read. (issue #372 [https://github.com/HypothesisWorks/hypothesis/issues/372]).

	Drawing from an integers() strategy with both a min_value and a max_value
would reject too many examples needlessly. Now it repeatedly redraws until
satisfied. (pull request #366 [https://github.com/HypothesisWorks/hypothesis/pull/366]. Thanks to Calen Pennington for the contribution).

3.5.2 - 2016-09-24

This is a bug fix release.

	The Hypothesis pytest plugin broke pytest support for doctests. Now it doesn’t.

3.5.1 - 2016-09-23

This is a bug fix release.

	Hypothesis now runs cleanly in -B and -BB modes, avoiding mixing bytes and unicode.

	unittest.TestCase [https://docs.python.org/3/library/unittest.html#unittest.TestCase] tests would not have shown up in the new statistics mode. Now they
do.

	Similarly, stateful tests would not have shown up in statistics and now they do.

	Statistics now print with pytest node IDs (the names you’d get in pytest verbose mode).

3.5.0 - 2016-09-22

This is a feature release.

	fractions() and decimals() strategies now support min_value and max_value
parameters. Thanks go to Anne Mulhern for the development of this feature.

	The Hypothesis pytest plugin now supports a --hypothesis-show-statistics parameter
that gives detailed statistics about the tests that were run. Huge thanks to
Jean-Louis Fuchs and Adfinis-SyGroup for funding the development of this feature.

	There is a new event() function that can be used to add custom statistics.

Additionally there have been some minor bug fixes:

	In some cases Hypothesis should produce fewer duplicate examples (this will mostly
only affect cases with a single parameter).

	pytest [https://pypi.org/project/pytest/] command line parameters are now under an option group for Hypothesis (thanks
to David Keijser for fixing this)

	Hypothesis would previously error if you used PEP 3107 [https://peps.python.org/pep-3107/] function annotations on your tests under
Python 3.4.

	The repr of many strategies using lambdas has been improved to include the lambda body
(this was previously supported in many but not all cases).

3.4.2 - 2016-07-13

This is a bug fix release, fixing a number of problems with the settings system:

	Test functions defined using @given can now be called from other threads
(issue #337 [https://github.com/HypothesisWorks/hypothesis/issues/337])

	Attempting to delete a settings property would previously have silently done
the wrong thing. Now it raises an AttributeError.

	Creating a settings object with a custom database_file parameter was silently
getting ignored and the default was being used instead. Now it’s not.

3.4.1 - 2016-07-07

This is a bug fix release for a single bug:

	On Windows when running two Hypothesis processes in parallel (e.g. using
pytest-xdist [https://pypi.org/project/pytest-xdist/]) they could race with each other and one would raise an exception
due to the non-atomic nature of file renaming on Windows and the fact that you
can’t rename over an existing file. This is now fixed.

3.4.0 - 2016-05-27

This release is entirely provided by Lucas Wiman [https://github.com/lucaswiman]:

Strategies constructed by the Django extra
will now respect much more of Django’s validations out of the box.
Wherever possible, full_clean() [https://django.readthedocs.io/en/stable/ref/models/instances.html#django.db.models.Model.full_clean] should
succeed.

In particular:

	The max_length, blank and choices kwargs are now respected.

	Add support for DecimalField.

	If a field includes validators, the list of validators are used to filter the field strategy.

3.3.0 - 2016-05-27

This release went wrong and is functionally equivalent to 3.2.0. Ignore it.

3.2.0 - 2016-05-19

This is a small single-feature release:

	All tests using @given now fix the global random seed. This removes the health
check for that. If a non-zero seed is required for the final falsifying
example, it will be reported. Otherwise Hypothesis will assume randomization
was not a significant factor for the test and be silent on the subject. If you
use random_module() this will continue to work and will always
display the seed.

3.1.3 - 2016-05-01

Single bug fix release

	Another charmap problem. In 3.1.2 text() and
characters() would break on systems
which had /tmp mounted on a different partition than the Hypothesis storage
directory (usually in home). This fixes that.

3.1.2 - 2016-04-30

Single bug fix release:

	Anything which used a text() or
characters() strategy was broken on Windows
and I hadn’t updated appveyor to use the new repository location so I didn’t
notice. This is now fixed and windows support should work correctly.

3.1.1 - 2016-04-29

Minor bug fix release.

	Fix concurrency issue when running tests that use text() from multiple
processes at once (issue #302 [https://github.com/HypothesisWorks/hypothesis/issues/302], thanks to Alex Chan).

	Improve performance of code using lists() with max_size (thanks to
Cristi Cobzarenco).

	Fix install on Python 2 with ancient versions of pip so that it installs the
enum34 [https://pypi.org/project/enum34/] backport (thanks to Donald Stufft for telling me how to do this).

	Remove duplicated __all__ exports from hypothesis.strategies (thanks to
Piët Delport).

	Update headers to point to new repository location.

	Allow use of strategies that can’t be used in find()
(e.g. choices()) in stateful testing.

3.1.0 - 2016-03-06

	Add a nothing() strategy that never successfully generates values.

	sampled_from() and one_of()
can both now be called with an empty argument
list, in which case they also never generate any values.

	one_of() may now be called with a single argument that is a collection of strategies
as well as as varargs.

	Add a runner() strategy which returns the instance of the current test object
if there is one.

	‘Bundle’ for RuleBasedStateMachine is now a normal(ish) strategy and can be used
as such.

	Tests using RuleBasedStateMachine should now shrink significantly better.

	Hypothesis now uses a pretty-printing library internally, compatible with IPython’s
pretty printing protocol (actually using the same code). This may improve the quality
of output in some cases.

	Add a ‘phases’ setting that allows more fine grained control over which parts of the
process Hypothesis runs

	Add a suppress_health_check setting which allows you to turn off specific health checks
in a fine grained manner.

	Fix a bug where lists of non fixed size would always draw one more element than they
included. This mostly didn’t matter, but if would cause problems with empty strategies
or ones with side effects.

	Add a mechanism to the Django model generator to allow you to explicitly request the
default value (thanks to Jeremy Thurgood for this one).

3.0.5 - 2016-02-25

	Fix a bug where Hypothesis would now error on pytest [https://pypi.org/project/pytest/] development versions.

3.0.4 - 2016-02-24

	Fix a bug where Hypothesis would error when running on Python 2.7.3 or
earlier because it was trying to pass a bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray] object
to struct.unpack() [https://docs.python.org/3/library/struct.html#struct.unpack] (which is only supported since 2.7.4).

3.0.3 - 2016-02-23

	Fix version parsing of pytest to work with pytest release candidates

	More general handling of the health check problem where things could fail because
of a cache miss - now one “free” example is generated before the start of the
health check run.

3.0.2 - 2016-02-18

	Under certain circumstances, strategies involving text() buried inside some
other strategy (e.g. text().filter(...) or recursive(text(), ...)) would cause
a test to fail its health checks the first time it ran. This was caused by having
to compute some related data and cache it to disk. On travis or anywhere else
where the .hypothesis directory was recreated this would have caused the tests
to fail their health check on every run. This is now fixed for all the known cases,
although there could be others lurking.

3.0.1 - 2016-02-18

	Fix a case where it was possible to trigger an “Unreachable” assertion when
running certain flaky stateful tests.

	Improve shrinking of large stateful tests by eliminating a case where it was
hard to delete early steps.

	Improve efficiency of drawing binary(min_size=n, max_size=n) significantly by
provide a custom implementation for fixed size blocks that can bypass a lot
of machinery.

	Set default home directory based on the current working directory at the
point Hypothesis is imported, not whenever the function first happens to be
called.

3.0.0 - 2016-02-17

Codename: This really should have been 2.1.

Externally this looks like a very small release. It has one small breaking change
that probably doesn’t affect anyone at all (some behaviour that never really worked
correctly is now outright forbidden) but necessitated a major version bump and one
visible new feature.

Internally this is a complete rewrite. Almost nothing other than the public API is
the same.

New features:

	Addition of data() strategy which allows you to draw arbitrary data interactively
within the test.

	New “exploded” database format which allows you to more easily check the example
database into a source repository while supporting merging.

	Better management of how examples are saved in the database.

	Health checks will now raise as errors when they fail. It was too easy to have
the warnings be swallowed entirely.

New limitations:

	choices() and streaming()
strategies may no longer be used with find(). Neither may
data() (this is the change that necessitated a major version bump).

Feature removal:

	The ForkingTestCase executor has gone away. It may return in some more working
form at a later date.

Performance improvements:

	A new model which allows flatmap, composite strategies and stateful testing to
perform much better. They should also be more reliable.

	Filtering may in some circumstances have improved significantly. This will
help especially in cases where you have lots of values with individual filters
on them, such as lists(x.filter(…)).

	Modest performance improvements to the general test runner by avoiding expensive
operations

In general your tests should have got faster. If they’ve instead got significantly
slower, I’m interested in hearing about it.

Data distribution:

The data distribution should have changed significantly. This may uncover bugs the
previous version missed. It may also miss bugs the previous version could have
uncovered. Hypothesis is now producing less strongly correlated data than it used
to, but the correlations are extended over more of the structure.

Shrinking:

Shrinking quality should have improved. In particular Hypothesis can now perform
simultaneous shrinking of separate examples within a single test (previously it
was only able to do this for elements of a single collection). In some cases
performance will have improved, in some cases it will have got worse but generally
shouldn’t have by much.

Older versions

2.0.0 - 2016-01-10

Codename: A new beginning

This release cleans up all of the legacy that accrued in the course of
Hypothesis 1.0. These are mostly things that were emitting deprecation warnings
in 1.19.0, but there were a few additional changes.

In particular:

	non-strategy values will no longer be converted to strategies when used in
given or find.

	FailedHealthCheck is now an error and not a warning.

	Handling of non-ascii reprs in user types have been simplified by using raw
strings in more places in Python 2.

	given no longer allows mixing positional and keyword arguments.

	given no longer works with functions with defaults.

	given no longer turns provided arguments into defaults - they will not appear
in the argspec at all.

	the basic() strategy no longer exists.

	the n_ary_tree strategy no longer exists.

	the average_list_length setting no longer exists. Note: If you’re using
using recursive() this will cause you a significant slow down. You should
pass explicit average_size parameters to collections in recursive calls.

	@rule can no longer be applied to the same method twice.

	Python 2.6 and 3.3 are no longer officially supported, although in practice
they still work fine.

This also includes two non-deprecation changes:

	given’s keyword arguments no longer have to be the rightmost arguments and
can appear anywhere in the method signature.

	The max_shrinks setting would sometimes not have been respected.

1.19.0 - 2016-01-09

Codename: IT COMES

This release heralds the beginning of a new and terrible age of Hypothesis 2.0.

It’s primary purpose is some final deprecations prior to said release. The goal
is that if your code emits no warnings under this release then it will probably run
unchanged under Hypothesis 2.0 (there are some caveats to this: 2.0 will drop
support for some Python versions, and if you’re using internal APIs then as usual
that may break without warning).

It does have two new features:

	New @seed() decorator which allows you to manually seed a test. This may be
harmlessly combined with and overrides the derandomize setting.

	settings objects may now be used as a decorator to fix those settings to a
particular @given test.

API changes (old usage still works but is deprecated):

	Settings has been renamed to settings (lower casing) in order to make the
decorator usage more natural.

	Functions for the storage directory that were in hypothesis.settings are now
in a new hypothesis.configuration module.

Additional deprecations:

	the average_list_length setting has been deprecated in favour of being
explicit.

	the basic() strategy has been deprecated as it is impossible to support
it under a Conjecture based model, which will hopefully be implemented at
some point in the 2.x series.

	the n_ary_tree strategy (which was never actually part of the public API)
has been deprecated.

	Passing settings or random as keyword arguments to given is deprecated (use
the new functionality instead)

Bug fixes:

	No longer emit PendingDeprecationWarning for __iter__ and StopIteration in
streaming() values.

	When running in health check mode with non strict, don’t print quite so
many errors for an exception in reify.

	When an assumption made in a test or a filter is flaky, tests will now
raise Flaky instead of UnsatisfiedAssumption.

1.18.1 - 2015-12-22

Two behind the scenes changes:

	Hypothesis will no longer write generated code to the file system. This
will improve performance on some systems (e.g. if you’re using
PythonAnywhere [https://www.pythonanywhere.com/] which is running your
code from NFS) and prevent some annoying interactions with auto-restarting
systems.

	Hypothesis will cache the creation of some strategies. This can significantly
improve performance for code that uses flatmap or composite and thus has to
instantiate strategies a lot.

1.18.0 - 2015-12-21

Features:

	Tests and find are now explicitly seeded off the global random module. This
means that if you nest one inside the other you will now get a health check
error. It also means that you can control global randomization by seeding
random.

	There is a new random_module() strategy which seeds the global random module
for you and handles things so that you don’t get a health check warning if
you use it inside your tests.

	floats() now accepts two new arguments: allow_nan and allow_infinity. These
default to the old behaviour, but when set to False will do what the names
suggest.

Bug fixes:

	Fix a bug where tests that used text() on Python 3.4+ would not actually be
deterministic even when explicitly seeded or using the derandomize mode,
because generation depended on dictionary iteration order which was affected
by hash randomization.

	Fix a bug where with complicated strategies the timing of the initial health
check could affect the seeding of the subsequent test, which would also
render supposedly deterministic tests non-deterministic in some scenarios.

	In some circumstances flatmap() could get confused by two structurally
similar things it could generate and would produce a flaky test where the
first time it produced an error but the second time it produced the other
value, which was not an error. The same bug was presumably also possible in
composite().

	flatmap() and composite() initial generation should now be moderately faster.
This will be particularly noticeable when you have many values drawn from the
same strategy in a single run, e.g. constructs like lists(s.flatmap(f)).
Shrinking performance may have suffered, but this didn’t actually produce
an interestingly worse result in any of the standard scenarios tested.

1.17.1 - 2015-12-16

A small bug fix release, which fixes the fact that the ‘note’ function could
not be used on tests which used the @example decorator to provide explicit
examples.

1.17.0 - 2015-12-15

This is actually the same release as 1.16.1, but 1.16.1 has been pulled because
it contains the following additional change that was not intended to be in a
patch release (it’s perfectly stable, but is a larger change that should have
required a minor version bump):

	Hypothesis will now perform a series of “health checks” as part of running
your tests. These detect and warn about some common error conditions that
people often run into which wouldn’t necessarily have caused the test to fail
but would cause e.g. degraded performance or confusing results.

1.16.1 - 2015-12-14

Note: This release has been removed.

A small bugfix release that allows bdists for Hypothesis to be built
under 2.7 - the compat3.py file which had Python 3 syntax wasn’t intended
to be loaded under Python 2, but when building a bdist it was. In particular
this would break running setup.py test.

1.16.0 - 2015-12-08

There are no public API changes in this release but it includes a behaviour
change that I wasn’t comfortable putting in a patch release.

	Functions from hypothesis.strategies will no longer raise InvalidArgument
on bad arguments. Instead the same errors will be raised when a test
using such a strategy is run. This may improve startup time in some
cases, but the main reason for it is so that errors in strategies
won’t cause errors in loading, and it can interact correctly with things
like pytest.mark.skipif.

	Errors caused by accidentally invoking the legacy API are now much less
confusing, although still throw NotImplementedError.

	hypothesis.extra.django is 1.9 compatible.

	When tests are run with max_shrinks=0 this will now still rerun the test
on failure and will no longer print “Trying example:” before each run.
Additionally note() will now work correctly when used with max_shrinks=0.

1.15.0 - 2015-11-24

A release with two new features.

	A ‘characters’ strategy for more flexible generation of text with particular
character ranges and types, kindly contributed by Alexander Shorin [https://github.com/kxepal].

	Add support for preconditions to the rule based stateful testing. Kindly
contributed by Christopher Armstrong [https://github.com/radix]

1.14.0 - 2015-11-01

New features:

	Add ‘note’ function which lets you include additional information in the
final test run’s output.

	Add ‘choices’ strategy which gives you a choice function that emulates
random.choice.

	Add ‘uuid’ strategy that generates UUIDs’

	Add ‘shared’ strategy that lets you create a strategy that just generates a
single shared value for each test run

Bugs:

	Using strategies of the form streaming(x.flatmap(f)) with find or in stateful
testing would have caused InvalidArgument errors when the resulting values
were used (because code that expected to only be called within a test context
would be invoked).

1.13.0 - 2015-10-29

This is quite a small release, but deprecates some public API functions
and removes some internal API functionality so gets a minor version bump.

	All calls to the ‘strategy’ function are now deprecated, even ones which
pass just a SearchStrategy instance (which is still a no-op).

	Never documented hypothesis.extra entry_points mechanism has now been removed (
it was previously how hypothesis.extra packages were loaded and has been deprecated
and unused for some time)

	Some corner cases that could previously have produced an OverflowError when simplifying
failing cases using hypothesis.extra.datetimes (or dates or times) have now been fixed.

	Hypothesis load time for first import has been significantly reduced - it used to be
around 250ms (on my SSD laptop) and now is around 100-150ms. This almost never
matters but was slightly annoying when using it in the console.

	hypothesis.strategies.randoms was previously missing from __all__.

1.12.0 - 2015-10-18

	Significantly improved performance of creating strategies using the functions
from the hypothesis.strategies module by deferring the calculation of their
repr until it was needed. This is unlikely to have been an performance issue
for you unless you were using flatmap, composite or stateful testing, but for
some cases it could be quite a significant impact.

	A number of cases where the repr of strategies build from lambdas is improved

	Add dates() and times() strategies to hypothesis.extra.datetimes

	Add new ‘profiles’ mechanism to the settings system

	Deprecates mutability of Settings, both the Settings.default top level property
and individual settings.

	A Settings object may now be directly initialized from a parent Settings.

	@given should now give a better error message if you attempt to use it with a
function that uses destructuring arguments (it still won’t work, but it will
error more clearly),

	A number of spelling corrections in error messages

	pytest [https://pypi.org/project/pytest/] should no longer display the intermediate modules Hypothesis generates
when running in verbose mode

	Hypothesis should now correctly handle printing objects with non-ascii reprs
on python 3 when running in a locale that cannot handle ascii printing to
stdout.

	Add a unique=True argument to lists(). This is equivalent to
unique_by=lambda x: x, but offers a more convenient syntax.

1.11.4 - 2015-09-27

	Hide modifications Hypothesis needs to make to sys.path by undoing them
after we’ve imported the relevant modules. This is a workaround for issues
cryptography experienced on windows.

	Slightly improved performance of drawing from sampled_from on large lists
of alternatives.

	Significantly improved performance of drawing from one_of or strategies
using | (note this includes a lot of strategies internally - floats()
and integers() both fall into this category). There turned out to be a
massive performance regression introduced in 1.10.0 affecting these which
probably would have made tests using Hypothesis significantly slower than
they should have been.

1.11.3 - 2015-09-23

	Better argument validation for datetimes() strategy - previously setting
max_year < datetime.MIN_YEAR or min_year > datetime.MAX_YEAR would not have
raised an InvalidArgument error and instead would have behaved confusingly.

	Compatibility with being run on pytest < 2.7 (achieved by disabling the
plugin).

1.11.2 - 2015-09-23

Bug fixes:

	Settings(database=my_db) would not be correctly inherited when used as a
default setting, so that newly created settings would use the database_file
setting and create an SQLite example database.

	Settings.default.database = my_db would previously have raised an error and
now works.

	Timeout could sometimes be significantly exceeded if during simplification
there were a lot of examples tried that didn’t trigger the bug.

	When loading a heavily simplified example using a basic() strategy from the
database this could cause Python to trigger a recursion error.

	Remove use of deprecated API in pytest plugin so as to not emit warning

Misc:

	hypothesis-pytest is now part of hypothesis core. This should have no
externally visible consequences, but you should update your dependencies to
remove hypothesis-pytest and depend on only Hypothesis.

	Better repr for hypothesis.extra.datetimes() strategies.

	Add .close() method to abstract base class for Backend (it was already present
in the main implementation).

1.11.1 - 2015-09-16

Bug fixes:

	When running Hypothesis tests in parallel (e.g. using pytest-xdist) there was a race
condition caused by code generation.

	Example databases are now cached per thread so as to not use sqlite connections from
multiple threads. This should make Hypothesis now entirely thread safe.

	floats() with only min_value or max_value set would have had a very bad distribution.

	Running on 3.5, Hypothesis would have emitted deprecation warnings because of use of
inspect.getargspec

1.11.0 - 2015-08-31

	text() with a non-string alphabet would have used the repr() of the the alphabet
instead of its contexts. This is obviously silly. It now works with any sequence
of things convertible to unicode strings.

	@given will now work on methods whose definitions contains no explicit positional
arguments, only varargs (issue #118 [https://github.com/HypothesisWorks/hypothesis/issues/118]).
This may have some knock on effects because it means that @given no longer changes the
argspec of functions other than by adding defaults.

	Introduction of new @composite feature for more natural definition of strategies you’d
previously have used flatmap for.

1.10.6 - 2015-08-26

Fix support for fixtures on Django 1.7.

1.10.4 - 2015-08-21

Tiny bug fix release:

	If the database_file setting is set to None, this would have resulted in
an error when running tests. Now it does the same as setting database to
None.

1.10.3 - 2015-08-19

Another small bug fix release.

	lists(elements, unique_by=some_function, min_size=n) would have raised a
ValidationError if n > Settings.default.average_list_length because it would
have wanted to use an average list length shorter than the minimum size of
the list, which is impossible. Now it instead defaults to twice the minimum
size in these circumstances.

	basic() strategy would have only ever produced at most ten distinct values
per run of the test (which is bad if you e.g. have it inside a list). This
was obviously silly. It will now produce a much better distribution of data,
both duplicated and non duplicated.

1.10.2 - 2015-08-19

This is a small bug fix release:

	star imports from hypothesis should now work correctly.

	example quality for examples using flatmap will be better, as the way it had
previously been implemented was causing problems where Hypothesis was
erroneously labelling some examples as being duplicates.

1.10.0 - 2015-08-04

This is just a bugfix and performance release, but it changes some
semi-public APIs, hence the minor version bump.

	Significant performance improvements for strategies which are one_of()
many branches. In particular this included recursive() strategies. This
should take the case where you use one recursive() strategy as the base
strategy of another from unusably slow (tens of seconds per generated
example) to reasonably fast.

	Better handling of just() and sampled_from() for values which have an
incorrect __repr__ implementation that returns non-ASCII unicode
on Python 2.

	Better performance for flatmap from changing the internal morpher API
to be significantly less general purpose.

	Introduce a new semi-public BuildContext/cleanup API. This allows
strategies to register cleanup activities that should run once the
example is complete. Note that this will interact somewhat weirdly with
find.

	Better simplification behaviour for streaming strategies.

	Don’t error on lambdas which use destructuring arguments in Python 2.

	Add some better reprs for a few strategies that were missing good ones.

	The Random instances provided by randoms() are now copyable.

	Slightly more debugging information about simplify when using a debug
verbosity level.

	Support using given for functions with varargs, but not passing arguments
to it as positional.

1.9.0 - 2015-07-27

Codename: The great bundling.

This release contains two fairly major changes.

The first is the deprecation of the hypothesis-extra mechanism. From
now on all the packages that were previously bundled under it other
than hypothesis-pytest (which is a different beast and will remain
separate). The functionality remains unchanged and you can still import
them from exactly the same location, they just are no longer separate
packages.

The second is that this introduces a new way of building strategies
which lets you build up strategies recursively from other strategies.

It also contains the minor change that calling .example() on a
strategy object will give you examples that are more representative of
the actual data you’ll get. There used to be some logic in there to make
the examples artificially simple but this proved to be a bad idea.

1.8.5 - 2015-07-24

This contains no functionality changes but fixes a mistake made with
building the previous package that would have broken installation on
Windows.

1.8.4 - 2015-07-20

Bugs fixed:

	When a call to floats() had endpoints which were not floats but merely
convertible to one (e.g. integers), these would be included in the generated
data which would cause it to generate non-floats.

	Splitting lambdas used in the definition of flatmap, map or filter over
multiple lines would break the repr, which would in turn break their usage.

1.8.3 - 2015-07-20

“Falsifying example” would not have been printed when the failure came from an
explicit example.

1.8.2 - 2015-07-18

Another small bugfix release:

	When using ForkingTestCase you would usually not get the falsifying example
printed if the process exited abnormally (e.g. due to os._exit).

	Improvements to the distribution of characters when using text() with a
default alphabet. In particular produces a better distribution of ascii and
whitespace in the alphabet.

1.8.1 - 2015-07-17

This is a small release that contains a workaround for people who have
bad reprs returning non ascii text on Python 2.7. This is not a bug fix
for Hypothesis per se because that’s not a thing that is actually supposed
to work, but Hypothesis leans more heavily on repr than is typical so it’s
worth having a workaround for.

1.8.0 - 2015-07-16

New features:

	Much more sensible reprs for strategies, especially ones that come from
hypothesis.strategies. These should now have as reprs python code that
would produce the same strategy.

	lists() accepts a unique_by argument which forces the generated lists to be
only contain elements unique according to some function key (which must
return a hashable value).

	Better error messages from flaky tests to help you debug things.

Mostly invisible implementation details that may result in finding new bugs
in your code:

	Sets and dictionary generation should now produce a better range of results.

	floats with bounds now focus more on ‘critical values’, trying to produce
values at edge cases.

	flatmap should now have better simplification for complicated cases, as well
as generally being (I hope) more reliable.

Bug fixes:

	You could not previously use assume() if you were using the forking executor.

1.7.2 - 2015-07-10

This is purely a bug fix release:

	When using floats() with stale data in the database you could sometimes get
values in your tests that did not respect min_value or max_value.

	When getting a Flaky error from an unreliable test it would have incorrectly
displayed the example that caused it.

	2.6 dependency on backports was incorrectly specified. This would only have
caused you problems if you were building a universal wheel from Hypothesis,
which is not how Hypothesis ships, so unless you’re explicitly building wheels
for your dependencies and support Python 2.6 plus a later version of Python
this probably would never have affected you.

	If you use flatmap in a way that the strategy on the right hand side depends
sensitively on the left hand side you may have occasionally seen Flaky errors
caused by producing unreliable examples when minimizing a bug. This use case
may still be somewhat fraught to be honest. This code is due a major rearchitecture
for 1.8, but in the meantime this release fixes the only source of this error that
I’m aware of.

1.7.1 - 2015-06-29

Codename: There is no 1.7.0.

A slight technical hitch with a premature upload means there’s was a yanked
1.7.0 release. Oops.

The major feature of this release is Python 2.6 support. Thanks to Jeff Meadows
for doing most of the work there.

Other minor features

	strategies now has a permutations() function which returns a strategy
yielding permutations of values from a given collection.

	if you have a flaky test it will print the exception that it last saw before
failing with Flaky, even if you do not have verbose reporting on.

	Slightly experimental git merge script available as “python -m
hypothesis.tools.mergedbs”. Instructions on how to use it in the docstring
of that file.

Bug fixes:

	Better performance from use of filter. In particular tests which involve large
numbers of heavily filtered strategies should perform a lot better.

	floats() with a negative min_value would not have worked correctly (worryingly,
it would have just silently failed to run any examples). This is now fixed.

	tests using sampled_from would error if the number of sampled elements was smaller
than min_satisfying_examples.

1.6.2 - 2015-06-08

This is just a few small bug fixes:

	Size bounds were not validated for values for a binary() strategy when
reading examples from the database.

	sampled_from is now in __all__ in hypothesis.strategies

	floats no longer consider negative integers to be simpler than positive
non-integers

	Small floating point intervals now correctly count members, so if you have a
floating point interval so narrow there are only a handful of values in it,
this will no longer cause an error when Hypothesis runs out of values.

1.6.1 - 2015-05-21

This is a small patch release that fixes a bug where 1.6.0 broke the use
of flatmap with the deprecated API and assumed the passed in function returned
a SearchStrategy instance rather than converting it to a strategy.

1.6.0 - 2015-05-21

This is a smallish release designed to fix a number of bugs and smooth out
some weird behaviours.

	Fix a critical bug in flatmap where it would reuse old strategies. If all
your flatmap code was pure you’re fine. If it’s not, I’m surprised it’s
working at all. In particular if you want to use flatmap with django models,
you desperately need to upgrade to this version.

	flatmap simplification performance should now be better in some cases where
it previously had to redo work.

	Fix for a bug where invalid unicode data with surrogates could be generated
during simplification (it was already filtered out during actual generation).

	The Hypothesis database is now keyed off the name of the test instead of the
type of data. This makes much more sense now with the new strategies API and
is generally more robust. This means you will lose old examples on upgrade.

	The database will now not delete values which fail to deserialize correctly,
just skip them. This is to handle cases where multiple incompatible strategies
share the same key.

	find now also saves and loads values from the database, keyed off a hash of the
function you’re finding from.

	Stateful tests now serialize and load values from the database. They should have
before, really. This was a bug.

	Passing a different verbosity level into a test would not have worked entirely
correctly, leaving off some messages. This is now fixed.

	Fix a bug where derandomized tests with unicode characters in the function
body would error on Python 2.7.

1.5.0 - 2015-05-14

Codename: Strategic withdrawal.

The purpose of this release is a radical simplification of the API for building
strategies. Instead of the old approach of @strategy.extend and things that
get converted to strategies, you just build strategies directly.

The old method of defining strategies will still work until Hypothesis 2.0,
because it’s a major breaking change, but will now emit deprecation warnings.

The new API is also a lot more powerful as the functions for defining strategies
give you a lot of dials to turn. See the updated data section for
details.

Other changes:

	Mixing keyword and positional arguments in a call to @given is deprecated as well.

	There is a new setting called ‘strict’. When set to True, Hypothesis will raise
warnings instead of merely printing them. Turning it on by default is inadvisable because
it means that Hypothesis minor releases can break your code, but it may be useful for
making sure you catch all uses of deprecated APIs.

	max_examples in settings is now interpreted as meaning the maximum number
of unique (ish) examples satisfying assumptions. A new setting max_iterations
which defaults to a larger value has the old interpretation.

	Example generation should be significantly faster due to a new faster parameter
selection algorithm. This will mostly show up for simple data types - for complex
ones the parameter selection is almost certainly dominated.

	Simplification has some new heuristics that will tend to cut down on cases
where it could previously take a very long time.

	timeout would previously not have been respected in cases where there were a lot
of duplicate examples. You probably wouldn’t have previously noticed this because
max_examples counted duplicates, so this was very hard to hit in a way that mattered.

	A number of internal simplifications to the SearchStrategy API.

	You can now access the current Hypothesis version as hypothesis.__version__.

	A top level function is provided for running the stateful tests without the
TestCase infrastructure.

1.4.0 - 2015-05-04

Codename: What a state.

The big feature of this release is the new and slightly experimental
stateful testing API. You can read more about that in the
appropriate section.

Two minor features the were driven out in the course of developing this:

	You can now set settings.max_shrinks to limit the number of times
Hypothesis will try to shrink arguments to your test. If this is set to
<= 0 then Hypothesis will not rerun your test and will just raise the
failure directly. Note that due to technical limitations if max_shrinks
is <= 0 then Hypothesis will print every example it calls your test
with rather than just the failing one. Note also that I don’t consider
settings max_shrinks to zero a sensible way to run your tests and it
should really be considered a debug feature.

	There is a new debug level of verbosity which is even more verbose than
verbose. You probably don’t want this.

Breakage of semi-public SearchStrategy API:

	It is now a required invariant of SearchStrategy that if u simplifies to
v then it is not the case that strictly_simpler(u, v). i.e. simplifying
should not increase the complexity even though it is not required to
decrease it. Enforcing this invariant lead to finding some bugs where
simplifying of integers, floats and sets was suboptimal.

	Integers in basic data are now required to fit into 64 bits. As a result
python integer types are now serialized as strings, and some types have
stopped using quite so needlessly large random seeds.

Hypothesis Stateful testing was then turned upon Hypothesis itself, which lead
to an amazing number of minor bugs being found in Hypothesis itself.

Bugs fixed (most but not all from the result of stateful testing) include:

	Serialization of streaming examples was flaky in a way that you would
probably never notice: If you generate a template, simplify it, serialize
it, deserialize it, serialize it again and then deserialize it you would
get the original stream instead of the simplified one.

	If you reduced max_examples below the number of examples already saved in
the database, you would have got a ValueError. Additionally, if you had
more than max_examples in the database all of them would have been
considered.

	@given will no longer count duplicate examples (which it never called
your function with) towards max_examples. This may result in your tests
running slower, but that’s probably just because they’re trying more
examples.

	General improvements to example search which should result in better
performance and higher quality examples. In particular parameters which
have a history of producing useless results will be more aggressively
culled. This is useful both because it decreases the chance of useless
examples and also because it’s much faster to not check parameters which
we were unlikely to ever pick!

	integers_from and lists of types with only one value (e.g. [None]) would
previously have had a very high duplication rate so you were probably
only getting a handful of examples. They now have a much lower
duplication rate, as well as the improvements to search making this
less of a problem in the first place.

	You would sometimes see simplification taking significantly longer than
your defined timeout. This would happen because timeout was only being
checked after each successful simplification, so if Hypothesis was
spending a lot of time unsuccessfully simplifying things it wouldn’t
stop in time. The timeout is now applied for unsuccessful simplifications
too.

	In Python 2.7, integers_from strategies would have failed during
simplification with an OverflowError if their starting point was at or
near to the maximum size of a 64-bit integer.

	flatmap and map would have failed if called with a function without a
__name__ attribute.

	If max_examples was less than min_satisfying_examples this would always
error. Now min_satisfying_examples is capped to max_examples. Note that
if you have assumptions to satisfy here this will still cause an error.

Some minor quality improvements:

	Lists of streams, flatmapped strategies and basic strategies should now
now have slightly better simplification.

1.3.0 - 2015-05-22

New features:

	New verbosity level API for printing intermediate results and exceptions.

	New specifier for strings generated from a specified alphabet.

	Better error messages for tests that are failing because of a lack of enough
examples.

Bug fixes:

	Fix error where use of ForkingTestCase would sometimes result in too many
open files.

	Fix error where saving a failing example that used flatmap could error.

	Implement simplification for sampled_from, which apparently never supported
it previously. Oops.

General improvements:

	Better range of examples when using one_of or sampled_from.

	Fix some pathological performance issues when simplifying lists of complex
values.

	Fix some pathological performance issues when simplifying examples that
require unicode strings with high codepoints.

	Random will now simplify to more readable examples.

1.2.1 - 2015-04-16

A small patch release for a bug in the new executors feature. Tests which require
doing something to their result in order to fail would have instead reported as
flaky.

1.2.0 - 2015-04-15

Codename: Finders keepers.

A bunch of new features and improvements.

	Provide a mechanism for customizing how your tests are executed.

	Provide a test runner that forks before running each example. This allows
better support for testing native code which might trigger a segfault or a C
level assertion failure.

	Support for using Hypothesis to find examples directly rather than as just as
a test runner.

	New streaming type which lets you generate infinite lazily loaded streams of
data - perfect for if you need a number of examples but don’t know how many.

	Better support for large integer ranges. You can now use integers_in_range
with ranges of basically any size. Previously large ranges would have eaten
up all your memory and taken forever.

	Integers produce a wider range of data than before - previously they would
only rarely produce integers which didn’t fit into a machine word. Now it’s
much more common. This percolates to other numeric types which build on
integers.

	Better validation of arguments to @given. Some situations that would
previously have caused silently wrong behaviour will now raise an error.

	Include +/- sys.float_info.max in the set of floating point edge cases that
Hypothesis specifically tries.

	Fix some bugs in floating point ranges which happen when given
+/- sys.float_info.max as one of the endpoints… (really any two floats that
are sufficiently far apart so that x, y are finite but y - x is infinite).
This would have resulted in generating infinite values instead of ones inside
the range.

1.1.1 - 2015-04-07

Codename: Nothing to see here

This is just a patch release put out because it fixed some internal bugs that would
block the Django integration release but did not actually affect anything anyone could
previously have been using. It also contained a minor quality fix for floats that
I’d happened to have finished in time.

	Fix some internal bugs with object lifecycle management that were impossible to
hit with the previously released versions but broke hypothesis-django.

	Bias floating point numbers somewhat less aggressively towards very small numbers

1.1.0 - 2015-04-06

Codename: No-one mention the M word.

	Unicode strings are more strongly biased towards ascii characters. Previously they
would generate all over the space. This is mostly so that people who try to
shape their unicode strings with assume() have less of a bad time.

	A number of fixes to data deserialization code that could theoretically have
caused mysterious bugs when using an old version of a Hypothesis example
database with a newer version. To the best of my knowledge a change that could
have triggered this bug has never actually been seen in the wild. Certainly
no-one ever reported a bug of this nature.

	Out of the box support for Decimal and Fraction.

	new dictionary specifier for dictionaries with variable keys.

	Significantly faster and higher quality simplification, especially for
collections of data.

	New filter() and flatmap() methods on Strategy for better ways of building
strategies out of other strategies.

	New BasicStrategy class which allows you to define your own strategies from
scratch without needing an existing matching strategy or being exposed to the
full horror or non-public nature of the SearchStrategy interface.

1.0.0 - 2015-03-27

Codename: Blast-off!

There are no code changes in this release. This is precisely the 0.9.2 release
with some updated documentation.

0.9.2 - 2015-03-26

Codename: T-1 days.

	floats_in_range would not actually have produced floats_in_range unless that
range happened to be (0, 1). Fix this.

0.9.1 - 2015-03-25

Codename: T-2 days.

	Fix a bug where if you defined a strategy using map on a lambda then the results would not be saved in the database.

	Significant performance improvements when simplifying examples using lists, strings or bounded integer ranges.

0.9.0 - 2015-03-23

Codename: The final countdown

This release could also be called 1.0-RC1.

It contains a teeny tiny bugfix, but the real point of this release is to declare
feature freeze. There will be zero functionality changes between 0.9.0 and 1.0 unless
something goes really really wrong. No new features will be added, no breaking API changes
will occur, etc. This is the final shakedown before I declare Hypothesis stable and ready
to use and throw a party to celebrate.

Bug bounty for any bugs found between now and 1.0: I will buy you a drink (alcoholic,
caffeinated, or otherwise) and shake your hand should we ever find ourselves in the
same city at the same time.

The one tiny bugfix:

	Under pypy, databases would fail to close correctly when garbage collected, leading to a memory leak and a confusing error message if you were repeatedly creating databases and not closing them. It is very unlikely you were doing this and the chances of you ever having noticed this bug are very low.

0.7.2 - 2015-03-22

Codename: Hygienic macros or bust

	You can now name an argument to @given ‘f’ and it won’t break (issue #38 [https://github.com/HypothesisWorks/hypothesis/issues/38])

	strategy_test_suite is now named strategy_test_suite as the documentation claims and not in fact strategy_test_suitee

	Settings objects can now be used as a context manager to temporarily override the default values inside their context.

0.7.1 - 2015-03-21

Codename: Point releases go faster

	Better string generation by parametrizing by a limited alphabet

	Faster string simplification - previously if simplifying a string with high range unicode characters it would try every unicode character smaller than that. This was pretty pointless. Now it stops after it’s a short range (it can still reach smaller ones through recursive calls because of other simplifying operations).

	Faster list simplification by first trying a binary chop down the middle

	Simultaneous simplification of identical elements in a list. So if a bug only triggers when you have duplicates but you drew e.g. [-17, -17], this will now simplify to [0, 0].

0.7.0, - 2015-03-20

Codename: Starting to look suspiciously real

This is probably the last minor release prior to 1.0. It consists of stability
improvements, a few usability things designed to make Hypothesis easier to try
out, and filing off some final rough edges from the API.

	Significant speed and memory usage improvements

	Add an example() method to strategy objects to give an example of the sort of data that the strategy generates.

	Remove .descriptor attribute of strategies

	Rename descriptor_test_suite to strategy_test_suite

	Rename the few remaining uses of descriptor to specifier (descriptor already has a defined meaning in Python)

0.6.0 - 2015-03-13

Codename: I’m sorry, were you using that API?

This is primarily a “simplify all the weird bits of the API” release. As a result there are a lot of breaking changes. If
you just use @given with core types then you’re probably fine.

In particular:

	Stateful testing has been removed from the API

	The way the database is used has been rendered less useful (sorry). The feature for reassembling values saved from other
tests doesn’t currently work. This will probably be brought back in post 1.0.

	SpecificationMapper is no longer a thing. Instead there is an ExtMethod called strategy which you extend to specify how
to convert other types to strategies.

	Settings are now extensible so you can add your own for configuring a strategy

	MappedSearchStrategy no longer needs an unpack method

	Basically all the SearchStrategy internals have changed massively. If you implemented SearchStrategy directly rather than
using MappedSearchStrategy talk to me about fixing it.

	Change to the way extra packages work. You now specify the package. This
must have a load() method. Additionally any modules in the package will be
loaded in under hypothesis.extra

Bug fixes:

	Fix for a bug where calling falsify on a lambda with a non-ascii character
in its body would error.

Hypothesis Extra:

	hypothesis-fakefactory: An extension for using faker data in hypothesis. Depends
	on fake-factory.

0.5.0 - 2015-02-10

Codename: Read all about it.

Core hypothesis:

	Add support back in for pypy and python 3.2

	@given functions can now be invoked with some arguments explicitly provided. If all arguments that hypothesis would have provided are passed in then no falsification is run.

	Related to the above, this means that you can now use pytest fixtures and mark.parametrize with Hypothesis without either interfering with the other.

	Breaking change: @given no longer works for functions with varargs (varkwargs are fine). This might be added back in at a later date.

	Windows is now fully supported. A limited version (just the tests with none of the extras) of the test suite is run on windows with each commit so it is now a first class citizen of the Hypothesis world.

	Fix a bug for fuzzy equality of equal complex numbers with different reprs (this can happen when one coordinate is zero). This shouldn’t affect users - that feature isn’t used anywhere public facing.

	Fix generation of floats on windows and 32-bit builds of python. I was using some struct.pack logic that only worked on certain word sizes.

	When a test times out and hasn’t produced enough examples this now raises a Timeout subclass of Unfalsifiable.

	Small search spaces are better supported. Previously something like a @given(bool, bool) would have failed because it couldn’t find enough examples. Hypothesis is now aware of the fact that these are small search spaces and will not error in this case.

	Improvements to parameter search in the case of hard to satisfy assume. Hypothesis will now spend less time exploring parameters that are unlikely to provide anything useful.

	Increase chance of generating “nasty” floats

	Fix a bug that would have caused unicode warnings if you had a sampled_from that was mixing unicode and byte strings.

	Added a standard test suite that you can use to validate a custom strategy you’ve defined is working correctly.

Hypothesis extra:

First off, introducing Hypothesis extra packages!

These are packages that are separated out from core Hypothesis because they have one or more dependencies. Every
hypothesis-extra package is pinned to a specific point release of Hypothesis and will have some version requirements
on its dependency. They use entry_points so you will usually not need to explicitly import them, just have them installed
on the path.

This release introduces two of them:

hypothesis-datetime:

Does what it says on the tin: Generates datetimes for Hypothesis. Just install the package and datetime support will start
working.

Depends on pytz for timezone support

hypothesis-pytest:

A very rudimentary pytest plugin. All it does right now is hook the display of falsifying examples into pytest reporting.

Depends on pytest.

0.4.3 - 2015-02-05

Codename: TIL narrow Python builds are a thing

This just fixes the one bug.

	Apparently there is such a thing as a “narrow python build” and OS X ships with these by default
for python 2.7. These are builds where you only have two bytes worth of unicode. As a result,
generating unicode was completely broken on OS X. Fix this by only generating unicode codepoints
in the range supported by the system.

0.4.2 - 2015-02-04

Codename: O(dear)

This is purely a bugfix release:

	Provide sensible external hashing for all core types. This will significantly improve
performance of tracking seen examples which happens in literally every falsification
run. For Hypothesis fixing this cut 40% off the runtime of the test suite. The behaviour
is quadratic in the number of examples so if you’re running the default configuration
this will be less extreme (Hypothesis’s test suite runs at a higher number of examples
than default), but you should still see a significant improvement.

	Fix a bug in formatting of complex numbers where the string could get incorrectly truncated.

0.4.1 - 2015-02-03

Codename: Cruel and unusual edge cases

This release is mostly about better test case generation.

Enhancements:

	Has a cool release name

	text_type (str in python 3, unicode in python 2) example generation now
actually produces interesting unicode instead of boring ascii strings.

	floating point numbers are generated over a much wider range, with particular
attention paid to generating nasty numbers - nan, infinity, large and small
values, etc.

	examples can be generated using pieces of examples previously saved in the
database. This allows interesting behaviour that has previously been discovered
to be propagated to other examples.

	improved parameter exploration algorithm which should allow it to more reliably
hit interesting edge cases.

	Timeout can now be disabled entirely by setting it to any value <= 0.

Bug fixes:

	The descriptor on a OneOfStrategy could be wrong if you had descriptors which
were equal but should not be coalesced. e.g. a strategy for one_of((frozenset({int}), {int}))
would have reported its descriptor as {int}. This is unlikely to have caused you
any problems

	If you had strategies that could produce NaN (which float previously couldn’t but
e.g. a Just(float(‘nan’)) could) then this would have sent hypothesis into an infinite
loop that would have only been terminated when it hit the timeout.

	Given elements that can take a long time to minimize, minimization of floats or tuples
could be quadratic or worse in the that value. You should now see much better performance
for simplification, albeit at some cost in quality.

Other:

	A lot of internals have been been rewritten. This shouldn’t affect you at all, but
it opens the way for certain of hypothesis’s oddities to be a lot more extensible by
users. Whether this is a good thing may be up for debate…

0.4.0 - 2015-01-21

FLAGSHIP FEATURE: Hypothesis now persists examples for later use. It stores
data in a local SQLite database and will reuse it for all tests of the same
type.

LICENSING CHANGE: Hypothesis is now released under the Mozilla Public License
2.0. This applies to all versions from 0.4.0 onwards until further notice.
The previous license remains applicable to all code prior to 0.4.0.

Enhancements:

	Printing of failing examples. I was finding that the pytest runner was not
doing a good job of displaying these, and that Hypothesis itself could do
much better.

	Drop dependency on six for cross-version compatibility. It was easy
enough to write the shim for the small set of features that we care about
and this lets us avoid a moderately complex dependency.

	Some improvements to statistical distribution of selecting from small (<=
3 elements)

	Improvements to parameter selection for finding examples.

Bugs fixed:

	could_have_produced for lists, dicts and other collections would not have
examined the elements and thus when using a union of different types of
list this could result in Hypothesis getting confused and passing a value
to the wrong strategy. This could potentially result in exceptions being
thrown from within simplification.

	sampled_from would not work correctly on a single element list.

	Hypothesis could get very confused by values which are
equal despite having different types being used in descriptors. Hypothesis
now has its own more specific version of equality it uses for descriptors
and tracking. It is always more fine grained than Python equality: Things
considered != are not considered equal by hypothesis, but some things that
are considered == are distinguished. If your test suite uses both frozenset
and set tests this bug is probably affecting you.

0.3.2 - 2015-01-16

	Fix a bug where if you specified floats_in_range with integer arguments
Hypothesis would error in example simplification.

	Improve the statistical distribution of the floats you get for the
floats_in_range strategy. I’m not sure whether this will affect users in
practice but it took my tests for various conditions from flaky to rock
solid so it at the very least improves discovery of the artificial cases
I’m looking for.

	Improved repr() for strategies and RandomWithSeed instances.

	Add detection for flaky test cases where hypothesis managed to find an
example which breaks it but on the final invocation of the test it does
not raise an error. This will typically happen with too much recursion
errors but could conceivably happen in other circumstances too.

	Provide a “derandomized” mode. This allows you to run hypothesis with
zero real randomization, making your build nice and deterministic. The
tests run with a seed calculated from the function they’re testing so you
should still get a good distribution of test cases.

	Add a mechanism for more conveniently defining tests which just sample
from some collection.

	Fix for a really subtle bug deep in the internals of the strategy table.
In some circumstances if you were to define instance strategies for both
a parent class and one or more of its subclasses you would under some
circumstances get the strategy for the wrong superclass of an instance.
It is very unlikely anyone has ever encountered this in the wild, but it
is conceivably possible given that a mix of namedtuple and tuple are used
fairly extensively inside hypothesis which do exhibit this pattern of
strategy.

0.3.1 - 2015-01-13

	Support for generation of frozenset and Random values

	Correct handling of the case where a called function mutates it argument.
This involved introducing a notion of a strategies knowing how to copy
their argument. The default method should be entirely acceptable and the
worst case is that it will continue to have the old behaviour if you
don’t mark your strategy as mutable, so this shouldn’t break anything.

	Fix for a bug where some strategies did not correctly implement
could_have_produced. It is very unlikely that any of these would have
been seen in the wild, and the consequences if they had been would have
been minor.

	Re-export the @given decorator from the main hypothesis namespace. It’s
still available at the old location too.

	Minor performance optimisation for simplifying long lists.

0.3.0 - 2015-01-12

	Complete redesign of the data generation system. Extreme breaking change
for anyone who was previously writing their own SearchStrategy
implementations. These will not work any more and you’ll need to modify
them.

	New settings system allowing more global and modular control of Verifier
behaviour.

	Decouple SearchStrategy from the StrategyTable. This leads to much more
composable code which is a lot easier to understand.

	A significant amount of internal API renaming and moving. This may also
break your code.

	Expanded available descriptors, allowing for generating integers or
floats in a specific range.

	Significantly more robust. A very large number of small bug fixes, none
of which anyone is likely to have ever noticed.

	Deprecation of support for pypy and python 3 prior to 3.3. 3.3 and 3.4.
Supported versions are 2.7.x, 3.3.x, 3.4.x. I expect all of these to
remain officially supported for a very long time. I would not be
surprised to add pypy support back in later but I’m not going to do so
until I know someone cares about it. In the meantime it will probably
still work.

0.2.2 - 2015-01-08

	Fix an embarrassing complete failure of the installer caused by my being
bad at version control

0.2.1 - 2015-01-07

	Fix a bug in the new stateful testing feature where you could make
__init__ a @requires method. Simplification would not always work if the
prune method was able to successfully shrink the test.

0.2.0 - 2015-01-07

	It’s aliiive.

	Improve python 3 support using six.

	Distinguish between byte and unicode types.

	Fix issues where FloatStrategy could raise.

	Allow stateful testing to request constructor args.

	Fix for issue where test annotations would timeout based on when the
module was loaded instead of when the test started

0.1.4 - 2013-12-14

	Make verification runs time bounded with a configurable timeout

0.1.3 - 2013-05-03

	Bugfix: Stateful testing behaved incorrectly with subclassing.

	Complex number support

	support for recursive strategies

	different error for hypotheses with unsatisfiable assumptions

0.1.2 - 2013-03-24

	Bugfix: Stateful testing was not minimizing correctly and could
throw exceptions.

	Better support for recursive strategies.

	Support for named tuples.

	Much faster integer generation.

0.1.1 - 2013-03-24

	Python 3.x support via 2to3.

	Use new style classes (oops).

0.1.0 - 2013-03-23

	Introduce stateful testing.

	Massive rewrite of internals to add flags and strategies.

0.0.5 - 2013-03-13

	No changes except trying to fix packaging

0.0.4 - 2013-03-13

	No changes except that I checked in a failing test case for 0.0.3
so had to replace the release. Doh

0.0.3 - 2013-03-13

	Improved a few internals.

	Opened up creating generators from instances as a general API.

	Test integration.

0.0.2 - 2013-03-12

	Starting to tighten up on the internals.

	Change API to allow more flexibility in configuration.

	More testing.

0.0.1 - 2013-03-10

	Initial release.

	Basic working prototype. Demonstrates idea, probably shouldn’t be used.

Ongoing Hypothesis development

Hypothesis development is managed by David R. MacIver [https://www.drmaciver.com]
and Zac Hatfield-Dodds [https://zhd.dev], respectively the first author and lead
maintainer.

However, these roles don’t include unpaid feature development on Hypothesis.
Our roles as leaders of the project are:

	Helping other people do feature development on Hypothesis

	Fixing bugs and other code health issues

	Improving documentation

	General release management work

	Planning the general roadmap of the project

	Doing sponsored development on tasks that are too large or in depth for other people to take on

So all new features must either be sponsored or implemented by someone else.
That being said, the maintenance team takes an active role in shepherding pull requests and
helping people write a new feature (see CONTRIBUTING.rst [https://github.com/HypothesisWorks/hypothesis/blob/master/CONTRIBUTING.rst] for
details and these examples of how the process goes [https://github.com/HypothesisWorks/hypothesis/pulls?q=is%3Apr+is%3Amerged+mentored]). This isn’t
“patches welcome”, it’s “we will help you write a patch”.

Release policy

Hypothesis releases follow semantic versioning [https://semver.org/].

We maintain backwards-compatibility wherever possible, and use deprecation
warnings to mark features that have been superseded by a newer alternative.
If you want to detect this, you can
upgrade warnings to errors in the usual ways [https://docs.python.org/3/library/warnings.html#module-warnings].

We use continuous deployment to ensure that you can always use our newest and
shiniest features - every change to the source tree is automatically built and
published on PyPI as soon as it’s merged onto master, after code review and
passing our extensive test suite.

Project roadmap

Hypothesis does not have a long-term release plan. We respond to bug reports
as they are made; new features are released as and when someone volunteers to
write and maintain them.

Help and support

For questions you are happy to ask in public, the Hypothesis community is a
friendly place where I or others will be more than happy to help you out. You’re also welcome to
ask questions on Stack Overflow. If you do, please tag them with
‘python-hypothesis’ [https://stackoverflow.com/questions/tagged/python-hypothesis] so someone
sees them.

For bugs and enhancements, please file an issue on the GitHub issue tracker [https://github.com/HypothesisWorks/hypothesis/issues/].
Note that as per the development policy, enhancements will probably not get
implemented unless you’re willing to pay for development or implement them yourself
(with assistance from the maintainers). Bugs
will tend to get fixed reasonably promptly, though it is of course on a best effort basis.

To see the versions of Python, optional dependencies, test runners, and operating systems Hypothesis
supports (meaning incompatibility is treated as a bug), see Compatibility.

If you need to ask questions privately or want more of a guarantee of bugs being fixed promptly, please contact me on
hypothesis-support@drmaciver.com to talk about availability of support contracts.

Packaging guidelines

Downstream packagers often want to package Hypothesis. Here are some guidelines.

The primary guideline is this: If you are not prepared to keep up with the Hypothesis release schedule,
don’t. You will annoy me and are doing your users a disservice.

Hypothesis has a very frequent release schedule. It’s rare that it goes a week without a release,
and there are often multiple releases in a given week.

If you are prepared to keep up with this schedule, you might find the rest of this document useful.

Release tarballs

These are available from the GitHub releases page [https://github.com/HypothesisWorks/hypothesis/releases]. The
tarballs on PyPI are intended for installation from a Python tool such as pip [https://pypi.org/project/pip/] and should not
be considered complete releases. Requests to include additional files in them will not be granted. Their absence
is not a bug.

Dependencies

Python versions

Hypothesis is designed to work with a range of Python versions - we support
all versions of CPython with upstream support [https://devguide.python.org/#status-of-python-branches].
We also support the latest versions of PyPy for Python 3.

Other Python libraries

Hypothesis has mandatory dependencies on the following libraries:

	attrs [https://pypi.org/project/attrs/]

	sortedcontainers [https://pypi.org/project/sortedcontainers/]

Hypothesis has optional dependencies on the following libraries:

extras_require = {
 "cli": ["click>=7.0", "black>=19.10b0", "rich>=9.0.0"],
 "codemods": ["libcst>=0.3.16"],
 "ghostwriter": ["black>=19.10b0"],
 "pytz": ["pytz>=2014.1"],
 "dateutil": ["python-dateutil>=1.4"],
 "lark": ["lark>=0.10.1"], # probably still works with old `lark-parser` too
 "numpy": ["numpy>=1.17.3"], # oldest with wheels for non-EOL Python (for now)
 "pandas": ["pandas>=1.1"],
 "pytest": ["pytest>=4.6"],
 "dpcontracts": ["dpcontracts>=0.4"],
 "redis": ["redis>=3.0.0"],
 "crosshair": ["hypothesis-crosshair>=0.0.2", "crosshair-tool>=0.0.54"],
 # zoneinfo is an odd one: every dependency is conditional, because they're
 # only necessary on old versions of Python or Windows systems or emscripten.
 "zoneinfo": [
 "tzdata>=2024.1 ; sys_platform == 'win32' or sys_platform == 'emscripten'",
 "backports.zoneinfo>=0.2.1 ; python_version<'3.9'",
],
 # We only support Django versions with upstream support - see
 # https://www.djangoproject.com/download/#supported-versions
 # We also leave the choice of timezone library to the user, since it
 # might be zoneinfo or pytz depending on version and configuration.
 "django": ["django>=3.2"],
}

The way this works when installing Hypothesis normally is that these features become available if the relevant
library is installed.

Specifically for pytest [https://pypi.org/project/pytest/], our plugin supports versions of pytest which
have been out of upstream support for some time. Hypothesis tests can still
be executed by even older versions of pytest - you just won’t have the plugin
to provide automatic marks, helpful usage warnings, and per-test statistics.

Testing Hypothesis

If you want to test Hypothesis as part of your packaging you will probably not want to use the mechanisms
Hypothesis itself uses for running its tests, because it has a lot of logic for installing and testing against
different versions of Python.

The tests must be run with fairly recent tooling; check the tree/master/requirements/ [https://github.com/HypothesisWorks/hypothesis/tree/master/requirements/]
directory for details.

The organisation of the tests is described in the hypothesis-python/tests/README.rst [https://github.com/HypothesisWorks/hypothesis/blob/master/hypothesis-python/tests/README.rst].

Examples

	arch linux [https://archlinux.org/packages/extra/any/python-hypothesis/]

	fedora [https://src.fedoraproject.org/rpms/python-hypothesis]

	gentoo [https://packages.gentoo.org/packages/dev-python/hypothesis]

Reproducing failures

One of the things that is often concerning for people using randomized testing
is the question of how to reproduce failing test cases.

Note

It is better to think about the data Hypothesis generates as being
arbitrary, rather than random. We deliberately generate any valid
data that seems likely to cause errors, so you shouldn’t rely on any
expected distribution of or relationships between generated data.
You can read about “swarm testing” and “coverage guided fuzzing” if
you’re interested, because you don’t need to know for Hypothesis!

Fortunately Hypothesis has a number of features to support reproducing test failures. The one you
will use most commonly when developing locally is the example database,
which means that you shouldn’t have to think about the problem at all for local
use - test failures will just automatically reproduce without you having to do
anything.

The example database is perfectly suitable for sharing between machines, but
there currently aren’t very good work flows for that, so Hypothesis provides a
number of ways to make examples reproducible by adding them to the source code
of your tests. This is particularly useful when e.g. you are trying to run an
example that has failed on your CI, or otherwise share them between machines.

Providing explicit examples

The simplest way to reproduce a failed test is to ask Hypothesis to run the
failing example it printed. For example, if Falsifying example: test(n=1)
was printed you can decorate test with @example(n=1).

@example can also be used to ensure a specific example is always executed
as a regression test or to cover some edge case - basically combining a
Hypothesis test and a traditional parametrized test.

	
class hypothesis.example(*args, **kwargs)

	A decorator which ensures a specific example is always tested.

Hypothesis will run all examples you’ve asked for first. If any of them fail it
will not go on to look for more examples.

It doesn’t matter whether you put the example decorator before or after given.
Any permutation of the decorators in the above will do the same thing.

Note that examples can be positional or keyword based. If they’re positional then
they will be filled in from the right when calling, so either of the following
styles will work as expected:

@given(text())
@example("Hello world")
@example(x="Some very long string")
def test_some_code(x):
 pass

from unittest import TestCase

class TestThings(TestCase):
 @given(text())
 @example("Hello world")
 @example(x="Some very long string")
 def test_some_code(self, x):
 pass

As with @given, it is not permitted for a single example to be a mix of
positional and keyword arguments.
Either are fine, and you can use one in one example and the other in another
example if for some reason you really want to, but a single example must be
consistent.

	
example.xfail(

	condition=True,

	*,

	reason='',

	raises=<class 'BaseException'>,

)

	Mark this example as an expected failure, similarly to
pytest.mark.xfail(strict=True) [https://docs.pytest.org/en/stable/reference/reference.html#pytest.mark.xfail].

Expected-failing examples allow you to check that your test does fail on
some examples, and therefore build confidence that passing tests are
because your code is working, not because the test is missing something.

@example(...).xfail()
@example(...).xfail(reason="Prices must be non-negative")
@example(...).xfail(raises=(KeyError, ValueError))
@example(...).xfail(sys.version_info[:2] >= (3, 9), reason="needs py39+")
@example(...).xfail(condition=sys.platform != "linux", raises=OSError)
def test(x):
 pass

Note

Expected-failing examples are handled separately from those generated
by strategies, so you should usually ensure that there is no overlap.

@example(x=1, y=0).xfail(raises=ZeroDivisionError)
@given(x=st.just(1), y=st.integers()) # Missing `.filter(bool)`!
def test_fraction(x, y):
 # This test will try the explicit example and see it fail as
 # expected, then go on to generate more examples from the
 # strategy. If we happen to generate y=0, the test will fail
 # because only the explicit example is treated as xfailing.
 x / y

Note that this “method chaining” syntax requires Python 3.9 or later, for
PEP 614 [https://peps.python.org/pep-0614/] relaxing grammar restrictions on decorators. If you need to
support older versions of Python, you can use an identity function:

def identity(x):
 return x

@identity(example(...).xfail())
def test(x):
 pass

	
example.via(whence, /)

	Attach a machine-readable label noting whence this example came.

The idea is that tools will be able to add @example() cases for you, e.g.
to maintain a high-coverage set of explicit examples, but also remove them
if they become redundant - without ever deleting manually-added examples:

You can choose to annotate examples, or not, as you prefer
@example(...)
@example(...).via("regression test for issue #42")

The `hy-` prefix is reserved for automated tooling
@example(...).via("hy-failing")
@example(...).via("hy-coverage")
@example(...).via("hy-target-$label")
def test(x):
 pass

Note that this “method chaining” syntax requires Python 3.9 or later, for
PEP 614 [https://peps.python.org/pep-0614/] relaxing grammar restrictions on decorators. If you need to
support older versions of Python, you can use an identity function:

def identity(x):
 return x

@identity(example(...).via("label"))
def test(x):
 pass

Reproducing a test run with @seed

	
hypothesis.seed(seed)

	seed: Start the test execution from a specific seed.

May be any hashable object. No exact meaning for seed is provided
other than that for a fixed seed value Hypothesis will try the same
actions (insofar as it can given external sources of non-
determinism. e.g. timing and hash randomization).

Overrides the derandomize setting, which is designed to enable
deterministic builds rather than reproducing observed failures.

When a test fails unexpectedly, usually due to a health check failure,
Hypothesis will print out a seed that led to that failure, if the test is not
already running with a fixed seed. You can then recreate that failure using either
the @seed decorator or (if you are running pytest [https://pypi.org/project/pytest/]) with
--hypothesis-seed. For example, the following test function and
RuleBasedStateMachine will each check the
same examples each time they are executed, thanks to @seed():

@seed(1234)
@given(x=...)
def test(x): ...

@seed(6789)
class MyModel(RuleBasedStateMachine): ...

The seed will not be printed if you could simply use @example instead.

Reproducing an example with @reproduce_failure

Hypothesis has an opaque binary representation that it uses for all examples it
generates. This representation is not intended to be stable across versions or
with respect to changes in the test, but can be used to to reproduce failures
with the @reproduce_failure decorator.

	
hypothesis.reproduce_failure(version, blob)

	Run the example that corresponds to this data blob in order to reproduce
a failure.

A test with this decorator always runs only one example and always fails.
If the provided example does not cause a failure, or is in some way invalid
for this test, then this will fail with a DidNotReproduce error.

This decorator is not intended to be a permanent addition to your test
suite. It’s simply some code you can add to ease reproduction of a problem
in the event that you don’t have access to the test database. Because of
this, no compatibility guarantees are made between different versions of
Hypothesis - its API may change arbitrarily from version to version.

The intent is that you should never write this decorator by hand, but it is
instead provided by Hypothesis.
When a test fails with a falsifying example, Hypothesis may print out a
suggestion to use @reproduce_failure on the test to recreate the problem
as follows:

>>> from hypothesis import settings, given, PrintSettings
>>> import hypothesis.strategies as st
>>> @given(st.floats())
... @settings(print_blob=True)
... def test(f):
... assert f == f
...
>>> try:
... test()
... except AssertionError:
... pass
...
Falsifying example: test(f=nan)

You can reproduce this example by temporarily adding @reproduce_failure(..., b'AAAA//AAAAAAAAEA') as a decorator on your test case

Adding the suggested decorator to the test should reproduce the failure (as
long as everything else is the same - changing the versions of Python or
anything else involved, might of course affect the behaviour of the test! Note
that changing the version of Hypothesis will result in a different error -
each @reproduce_failure invocation is specific to a Hypothesis version).

By default these messages are not printed.
If you want to see these you must set the print_blob setting to True.

Observability tools

Warning

This feature is experimental, and could have breaking changes or even be removed
without notice. Try it out, let us know what you think, but don’t rely on it
just yet!

Motivation

Understanding what your code is doing - for example, why your test failed - is often
a frustrating exercise in adding some more instrumentation or logging (or print() calls)
and running it again. The idea of observability [https://en.wikipedia.org/wiki/Observability_(software)]
is to let you answer questions you didn’t think of in advance. In slogan form,

Debugging should be a data analysis problem.

By default, Hypothesis only reports the minimal failing example… but sometimes you might
want to know something about all the examples. Printing them to the terminal with
verbose output might be nice, but isn’t always enough.
This feature gives you an analysis-ready dataframe with useful columns and one row
per test case, with columns from arguments to code coverage to pass/fail status.

This is deliberately a much lighter-weight and task-specific system than e.g.
OpenTelemetry [https://opentelemetry.io/]. It’s also less detailed than time-travel
debuggers such as rr [https://rr-project.org/] or pytrace [https://pytrace.com/],
because there’s no good way to compare multiple traces from these tools and their
Python support is relatively immature.

Configuration

If you set the HYPOTHESIS_EXPERIMENTAL_OBSERVABILITY environment variable,
Hypothesis will log various observations to jsonlines files in the
.hypothesis/observed/ directory. You can load and explore these with e.g.
pd.read_json(".hypothesis/observed/*_testcases.jsonl", lines=True) [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json],
or by using the sqlite-utils [https://pypi.org/project/sqlite-utils/] and datasette [https://pypi.org/project/datasette/] libraries:

sqlite-utils insert testcases.db testcases .hypothesis/observed/*_testcases.jsonl --nl --flatten
datasette serve testcases.db

If you are experiencing a significant slow-down, you can try setting
HYPOTHESIS_EXPERIMENTAL_OBSERVABILITY_NOCOVER instead; this will disable coverage information
collection. This should not be necessary on Python 3.12 or later.

Collecting more information

If you want to record more information about your test cases than the arguments and
outcome - for example, was x a binary tree? what was the difference between the
expected and the actual value? how many queries did it take to find a solution? -
Hypothesis makes this easy.

event() accepts a string label, and optionally a string or int or
float observation associated with it. All events are collected and summarized in
Test statistics, as well as included on a per-test-case basis in our observations.

target() is a special case of numeric-valued events: as well as
recording them in observations, Hypothesis will try to maximize the targeted value.
Knowing that, you can use this to guide the search for failing inputs.

Data Format

We dump observations in json lines format [https://jsonlines.org/], with each line
describing either a test case or an information message. The tables below are derived
from this machine-readable JSON schema, to
provide both readable and verifiable specifications.

Note that we use json.dumps() [https://docs.python.org/3/library/json.html#json.dumps] and can therefore emit non-standard JSON
which includes infinities and NaN. This is valid in JSON5 [https://json5.org/],
and supported by some JSON parsers [https://evanhahn.com/pythons-nonstandard-json-encoding/]
including Gson in Java, JSON.parse() in Ruby, and of course in Python.

Test case

	Describes the inputs to and result of running some test function on a particular input. The test might have passed, failed, or been abandoned part way through (e.g. because we failed a .filter() condition).

	properties

	
	type

	A tag which labels this observation as data about a specific test case.

	const

	test_case

	
	status

	Whether the test passed, failed, or was aborted before completion (e.g. due to use of .filter()). Note that if we gave_up partway, values such as arguments and features may be incomplete.

	enum

	passed, failed, gave_up

	
	status_reason

	If non-empty, the reason for which the test failed or was abandoned. For Hypothesis, this is usually the exception type and location.

	type

	string

	
	representation

	The string representation of the input.

	type

	string

	
	arguments

	A structured json-encoded representation of the input. Hypothesis provides a dictionary of argument names to json-ified values, including interactive draws from the data() strategy. If ‘status’ is ‘gave_up’, this may be absent or incomplete. In other libraries this can be any object.

	type

	object

	
	how_generated

	How the input was generated, if known. In Hypothesis this might be an explicit example, generated during a particular phase with some backend, or by replaying the minimal failing example.

	type

	string / null

	
	features

	Runtime observations which might help explain what this test case did. Hypothesis includes target() scores, tags from event(), and so on.

	type

	object

	
	coverage

	Mapping of filename to list of covered line numbers, if coverage information is available, or None if not. Hypothesis deliberately omits stdlib and site-packages code.

	type

	object / null

	additionalProperties

	type

	array

	items

	type

	integer

	minimum

	1

	uniqueItems

	True

	
	timing

	The time in seconds taken by non-overlapping parts of this test case. Hypothesis reports execute:test, and generate:{argname} for each argument.

	type

	object

	additionalProperties

	type

	number

	minimum

	0

	
	metadata

	Arbitrary metadata which might be of interest, but does not semantically fit in ‘features’. For example, Hypothesis includes the traceback for failing tests here.

	type

	object

	
	property

	The name or representation of the test function we’re running.

	type

	string

	
	run_start

	unix timestamp at which we started running this test function, so that later analysis can group test cases by run.

	type

	number

Information message

	Info, alert, and error messages correspond to a group of test cases or the overall run, and are intended for humans rather than machine analysis.

	properties

	
	type

	A tag which labels this observation as general information to show the user. Hypothesis uses info messages to report statistics; alert or error messages can be provided by plugins.

	enum

	info, alert, error

	
	title

	The title of this message

	type

	string

	
	content

	The body of the message. May use markdown.

	type

	string

	
	property

	The name or representation of the test function we’re running. For Hypothesis, usually the Pytest nodeid.

	type

	string

	
	run_start

	unix timestamp at which we started running this test function, so that later analysis can group test cases by run.

	type

	number

 Python Module Index

 h |
 x

 		 	

 		
 h	

 	[image: -]
 	
 hypothesis	

 	
 	
 hypothesis.extra.cli	

 	
 	
 hypothesis.extra.codemods	

 	
 	
 hypothesis.extra.dateutil	

 	
 	
 hypothesis.extra.dpcontracts	

 	
 	
 hypothesis.extra.ghostwriter	

 	
 	
 hypothesis.extra.lark	

 	
 	
 hypothesis.extra.numpy	

 	
 	
 hypothesis.extra.pandas	

 	
 	
 hypothesis.extra.pytz	

 	
 	
 hypothesis.provisional	

 	
 	
 hypothesis.strategies	

 		 	

 		
 x	

 	
 	
 xps	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | X

A

 	
 	array_dtypes() (in module hypothesis.extra.numpy)

 	array_shapes() (in module hypothesis.extra.numpy)

 	(in module xps)

 	
 	arrays() (in module hypothesis.extra.numpy)

 	(in module xps)

 	assume() (in module hypothesis)

B

 	
 	backend (hypothesis.settings attribute)

 	basic_indices() (in module hypothesis.extra.numpy)

 	binary() (in module hypothesis.strategies)

 	binary_operation() (in module hypothesis.extra.ghostwriter)

 	boolean_dtypes() (in module xps)

 	
 	booleans() (in module hypothesis.strategies)

 	broadcastable_shapes() (in module hypothesis.extra.numpy)

 	(in module xps)

 	builds() (in module hypothesis.strategies)

 	Bundle (class in hypothesis.stateful)

 	byte_string_dtypes() (in module hypothesis.extra.numpy)

C

 	
 	characters() (in module hypothesis.strategies)

 	column (class in hypothesis.extra.pandas)

 	columns() (in module hypothesis.extra.pandas)

 	complex_dtypes() (in module xps)

 	
 	complex_number_dtypes() (in module hypothesis.extra.numpy)

 	complex_numbers() (in module hypothesis.strategies)

 	composite() (in module hypothesis.strategies)

 	consumes() (in module hypothesis.stateful)

 	currently_in_test_context() (in module hypothesis)

D

 	
 	data() (in module hypothesis.strategies)

 	data_frames() (in module hypothesis.extra.pandas)

 	data_too_large (hypothesis.HealthCheck attribute)

 	database (hypothesis.settings attribute)

 	DataObject (class in hypothesis.strategies)

 	dates() (in module hypothesis.strategies)

 	datetime64_dtypes() (in module hypothesis.extra.numpy)

 	datetimes() (in module hypothesis.strategies)

 	deadline (hypothesis.settings attribute)

 	
 	decimals() (in module hypothesis.strategies)

 	deferred() (in module hypothesis.strategies)

 	delete() (hypothesis.database.ExampleDatabase method)

 	derandomize (hypothesis.settings attribute)

 	dictionaries() (in module hypothesis.strategies)

 	differing_executors (hypothesis.HealthCheck attribute)

 	DirectoryBasedExampleDatabase (class in hypothesis.database)

 	domains() (in module hypothesis.provisional)

 	DrawFn (class in hypothesis.strategies)

E

 	
 	emails() (in module hypothesis.strategies)

 	
 environment variable

 	HYPOTHESIS_NO_PLUGINS, [1]

 	equivalent() (in module hypothesis.extra.ghostwriter)

 	
 	event() (in module hypothesis)

 	example (class in hypothesis)

 	ExampleDatabase (class in hypothesis.database)

 	explain (hypothesis.Phase attribute)

 	explicit (hypothesis.Phase attribute)

F

 	
 	fetch() (hypothesis.database.ExampleDatabase method)

 	filter_too_much (hypothesis.HealthCheck attribute)

 	fixed_dictionaries() (in module hypothesis.strategies)

 	floating_dtypes() (in module hypothesis.extra.numpy)

 	(in module xps)

 	floats() (in module hypothesis.strategies)

 	fractions() (in module hypothesis.strategies)

 	from_dtype() (in module hypothesis.extra.numpy)

 	(in module xps)

 	from_field() (in module hypothesis.extra.django)

 	
 	from_form() (in module hypothesis.extra.django)

 	from_lark() (in module hypothesis.extra.lark)

 	from_model() (in module hypothesis.extra.django)

 	from_regex() (in module hypothesis.strategies)

 	from_type() (in module hypothesis.strategies)

 	frozensets() (in module hypothesis.strategies)

 	fulfill() (in module hypothesis.extra.dpcontracts)

 	function_scoped_fixture (hypothesis.HealthCheck attribute)

 	functions() (in module hypothesis.strategies)

 	fuzz() (in module hypothesis.extra.ghostwriter)

G

 	
 	generate (hypothesis.Phase attribute)

 	get_profile() (hypothesis.settings static method)

 	
 	GitHubArtifactDatabase (class in hypothesis.database)

 	given() (in module hypothesis)

H

 	
 	HealthCheck (class in hypothesis)

 	
 hypothesis.extra.cli

 	module

 	
 hypothesis.extra.codemods

 	module

 	
 hypothesis.extra.dateutil

 	module

 	hypothesis.extra.django.LiveServerTestCase (built-in class)

 	hypothesis.extra.django.StaticLiveServerTestCase (built-in class)

 	hypothesis.extra.django.TestCase (built-in class)

 	hypothesis.extra.django.TransactionTestCase (built-in class)

 	
 hypothesis.extra.dpcontracts

 	module

 	
 hypothesis.extra.ghostwriter

 	module

 	
 	
 hypothesis.extra.lark

 	module

 	
 hypothesis.extra.numpy

 	module

 	
 hypothesis.extra.pandas

 	module

 	
 hypothesis.extra.pytz

 	module

 	hypothesis.infer (built-in variable)

 	
 hypothesis.provisional

 	module

 	
 hypothesis.strategies

 	module

 	hypothesis.strategies.SearchStrategy (built-in class)

 	HYPOTHESIS_NO_PLUGINS

 	HypothesisDeprecationWarning (class in hypothesis.errors)

I

 	
 	idempotent() (in module hypothesis.extra.ghostwriter)

 	indexes() (in module hypothesis.extra.pandas)

 	indices() (in module xps)

 	initialize() (in module hypothesis.stateful)

 	InMemoryExampleDatabase (class in hypothesis.database)

 	integer_array_indices() (in module hypothesis.extra.numpy)

 	
 	integer_dtypes() (in module hypothesis.extra.numpy)

 	(in module xps)

 	integers() (in module hypothesis.strategies)

 	invariant() (in module hypothesis.stateful)

 	ip_addresses() (in module hypothesis.strategies)

 	iterables() (in module hypothesis.strategies)

J

 	
 	just() (in module hypothesis.strategies)

L

 	
 	large_base_example (hypothesis.HealthCheck attribute)

 	
 	lists() (in module hypothesis.strategies)

 	load_profile() (hypothesis.settings static method)

M

 	
 	magic() (in module hypothesis.extra.ghostwriter)

 	make_strategies_namespace() (in module hypothesis.extra.array_api)

 	max_examples (hypothesis.settings attribute)

 	
 module

 	hypothesis.extra.cli

 	hypothesis.extra.codemods

 	hypothesis.extra.dateutil

 	hypothesis.extra.dpcontracts

 	hypothesis.extra.ghostwriter

 	hypothesis.extra.lark

 	hypothesis.extra.numpy

 	hypothesis.extra.pandas

 	hypothesis.extra.pytz

 	hypothesis.provisional

 	hypothesis.strategies

 	xps

 	
 	move() (hypothesis.database.ExampleDatabase method)

 	multiple() (in module hypothesis.stateful)

 	MultiplexedDatabase (class in hypothesis.database)

 	mutually_broadcastable_shapes() (in module hypothesis.extra.numpy)

 	(in module xps)

N

 	
 	nested_dtypes() (in module hypothesis.extra.numpy)

 	none() (in module hypothesis.strategies)

 	not_a_test_method (hypothesis.HealthCheck attribute)

 	
 	note() (in module hypothesis)

 	nothing() (in module hypothesis.strategies)

 	numeric_dtypes() (in module xps)

O

 	
 	one_of() (in module hypothesis.strategies)

P

 	
 	permutations() (in module hypothesis.strategies)

 	Phase (class in hypothesis)

 	phases (hypothesis.settings attribute)

 	precondition() (in module hypothesis.stateful)

 	print_blob (hypothesis.settings attribute)

 	
 Python Enhancement Proposals

 	PEP 20

 	PEP 3102, [1]

 	PEP 3107, [1]

 	PEP 357

 	PEP 398

 	PEP 429

 	PEP 484, [1], [2]

 	PEP 484#forward-references

 	PEP 495

 	PEP 560

 	PEP 561, [1]

 	PEP 565

 	PEP 570

 	PEP 585, [1], [2], [3]

 	PEP 586

 	PEP 604

 	PEP 612

 	PEP 614, [1], [2], [3]

 	PEP 646

 	PEP 654, [1], [2]

 	PEP 655

 	PEP 678, [1], [2]

 	PEP 696, [1]

R

 	
 	random_module() (in module hypothesis.strategies)

 	randoms() (in module hypothesis.strategies)

 	range_indexes() (in module hypothesis.extra.pandas)

 	ReadOnlyDatabase (class in hypothesis.database)

 	real_dtypes() (in module xps)

 	recursive() (in module hypothesis.strategies)

 	RedisExampleDatabase (class in hypothesis.extra.redis)

 	refactor() (in module hypothesis.extra.codemods)

 	register_field_strategy() (in module hypothesis.extra.django)

 	register_profile() (hypothesis.settings static method)

 	register_random() (in module hypothesis)

 	register_type_strategy() (in module hypothesis.strategies)

 	report_multiple_bugs (hypothesis.settings attribute)

 	
 	reproduce_failure() (in module hypothesis)

 	return_value (hypothesis.HealthCheck attribute)

 	reuse (hypothesis.Phase attribute)

 	
 RFC

 	RFC 1035, [1]

 	RFC 3986, [1]

 	RFC 5234

 	RFC 5322#section-3.4.1

 	RFC 5890

 	roundtrip() (in module hypothesis.extra.ghostwriter)

 	rule() (in module hypothesis.stateful)

 	RuleBasedStateMachine (class in hypothesis.stateful)

 	runner() (in module hypothesis.strategies)

S

 	
 	sampled_from() (in module hypothesis.strategies)

 	save() (hypothesis.database.ExampleDatabase method)

 	scalar_dtypes() (in module hypothesis.extra.numpy)

 	(in module xps)

 	seed() (in module hypothesis)

 	series() (in module hypothesis.extra.pandas)

 	
 	sets() (in module hypothesis.strategies)

 	settings (class in hypothesis)

 	shared() (in module hypothesis.strategies)

 	shrink (hypothesis.Phase attribute)

 	slices() (in module hypothesis.strategies)

 	stateful_step_count (hypothesis.settings attribute)

 	suppress_health_check (hypothesis.settings attribute)

T

 	
 	target (hypothesis.Phase attribute)

 	target() (in module hypothesis)

 	text() (in module hypothesis.strategies)

 	timedelta64_dtypes() (in module hypothesis.extra.numpy)

 	timedeltas() (in module hypothesis.strategies)

 	times() (in module hypothesis.strategies)

 	
 	timezone_keys() (in module hypothesis.strategies)

 	timezones() (in module hypothesis.extra.dateutil)

 	(in module hypothesis.extra.pytz)

 	(in module hypothesis.strategies)

 	too_slow (hypothesis.HealthCheck attribute)

 	tuples() (in module hypothesis.strategies)

U

 	
 	ufunc() (in module hypothesis.extra.ghostwriter)

 	unicode_string_dtypes() (in module hypothesis.extra.numpy)

 	unsigned_integer_dtypes() (in module hypothesis.extra.numpy)

 	(in module xps)

 	
 	urls() (in module hypothesis.provisional)

 	uuids() (in module hypothesis.strategies)

V

 	
 	valid_tuple_axes() (in module hypothesis.extra.numpy)

 	(in module xps)

 	
 	verbosity (hypothesis.settings attribute)

 	via() (hypothesis.example method)

X

 	
 	xfail() (hypothesis.example method)

 	
 	
 xps

 	module

 _static/plus.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Hypothesis!

