Hypothesis does its level best to be compatible with everything you could possibly need it to be compatible with. Generally you should just try it and expect it to work. If it doesn’t, you can be surprised and check this document for the details.

Hypothesis versions

Backwards compatibility is better than backporting fixes, so we use semantic versioning and only support the most recent version of Hypothesis. See Help and Support for more information.

Documented APIs will not break except between major version bumps. All APIs mentioned in this documentation are public unless explicitly noted as provisional, in which case they may be changed in minor releases. Undocumented attributes, modules, and behaviour may include breaking changes in patch releases.

Python versions

Hypothesis is supported and tested on CPython 2.7 and CPython 3.5+, i.e. all versions of CPython with upstream support,

Hypothesis also supports the latest PyPy for both Python 2 (until 2020) and Python 3. Hypothesis does not currently work on Jython, though it probably could (issue #174). IronPython might work but hasn’t been tested. 32-bit and narrow builds should work, though this is currently only tested on Windows.

In general Hypothesis does not officially support anything except the latest patch release of any version of Python it supports. Earlier releases should work and bugs in them will get fixed if reported, but they’re not tested in CI and no guarantees are made.

Operating systems

In theory Hypothesis should work anywhere that Python does. In practice it is only known to work and regularly tested on OS X, Windows and Linux, and you may experience issues running it elsewhere.

If you’re using something else and it doesn’t work, do get in touch and I’ll try to help, but unless you can come up with a way for me to run a CI server on that operating system it probably won’t stay fixed due to the inevitable march of time.

Testing frameworks

In general Hypothesis goes to quite a lot of effort to generate things that look like normal Python test functions that behave as closely to the originals as possible, so it should work sensibly out of the box with every test framework.

If your testing relies on doing something other than calling a function and seeing if it raises an exception then it probably won’t work out of the box. In particular things like tests which return generators and expect you to do something with them (e.g. nose’s yield based tests) will not work. Use a decorator or similar to wrap the test to take this form, or ask the framework maintainer to support our hooks for inserting such a wrapper later.

In terms of what’s actually known to work:

  • Hypothesis integrates as smoothly with pytest and unittest as we can make it, and this is verified as part of the CI.
  • pytest fixtures work in the usual way for tests that have been decorated with @given - just avoid passing a strategy for each argument that will be supplied by a fixture. However, each fixture will run once for the whole function, not once per example. Decorating a fixture function with @given is meaningless.
  • The unittest.mock.patch() decorator works with @given, but we recommend using it as a context manager within the decorated test to ensure that the mock is per-test-case and avoid poor interactions with Pytest fixtures.
  • Nose works fine with Hypothesis, and this is tested as part of the CI. yield based tests simply won’t work.
  • Integration with Django’s testing requires use of the Hypothesis for Django users package. The issue is that in Django’s tests’ normal mode of execution it will reset the database once per test rather than once per example, which is not what you want.
  • Coverage works out of the box with Hypothesis; our own test suite has 100% branch coverage.

Optional Packages

The supported versions of optional packages, for strategies in hypothesis.extra, are listed in the documentation for that extra. Our general goal is to support all versions that are supported upstream.

Regularly verifying this

Everything mentioned above as explicitly supported is checked on every commit with Travis, and Azure Pipelines. Our continuous delivery pipeline runs all of these checks before publishing each release, so when we say they’re supported we really mean it.